Hybrid deep learning network for vascular segmentation in photoacoustic imaging

被引:34
作者
Yuan, Alan Yilun [1 ]
Gao, Yang [2 ]
Peng, Liangliang [2 ]
Zhou, Lingxiao [3 ,4 ]
Liu, Jun [5 ]
Zhu, Siwei [5 ]
Song, Wei [3 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Nanophoton Res Ctr, Shenzhen, Peoples R China
[3] Shenzhen Univ, Nanophoton Res Ctr, Inst Microscale Optoelect, Shenzhen Key Lab Microscale Opt Informat Technol, Shenzhen, Peoples R China
[4] Fudan Univ, Zhongshan Xuhui Hosp, Dept Resp Med, Shanghai, Peoples R China
[5] Tianjin Union Med Ctr, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
VESSEL SEGMENTATION; MICROSCOPY; CLASSIFICATION;
D O I
10.1364/BOE.409246
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Photoacoustic (PA) technology has been used extensively on vessel imaging due to its capability of identifying molecular specificities and achieving high optical-diffraction-limited lateral resolution down to the cellular level. Vessel images carry essential medical information that provides guidelines for a professional diagnosis. Modern image processing techniques provide a decent contribution to vessel segmentation. However, these methods suffer from under or over-segmentation. Thus, we demonstrate both the results of adopting a fully convolutional network and U-net, and propose a hybrid network consisting of both applied on PA vessel images. Comparison results indicate that the hybrid network can significantly increase the segmentation accuracy and robustness. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6445 / 6457
页数:13
相关论文
共 48 条
[1]  
Allman M, 2019, PROCEEDINGS OF THE EIGHTEENTH ACM WORKSHOP ON HOT TOPICS IN NETWORKS (HOTNETS '19), P1, DOI 10.1145/3365609.3365863
[2]  
[Anonymous], 2017, ARXIV170103056
[3]  
[Anonymous], arXiv
[4]  
[Anonymous], 2017, IEEE T PATTERN ANAL
[5]  
[Anonymous], 2015, J. Comput. Commun., DOI [DOI 10.4236/JCC.2015.311023, 10.4236/jcc.2015.311023]
[6]   Deep learning for photoacoustic tomography from sparse data [J].
Antholzer, Stephan ;
Haltmeier, Markus ;
Schwab, Johannes .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (07) :987-1005
[7]   A review of clinical photoacoustic imaging: Current and future trends [J].
Attia, Amalina Binte Ebrahim ;
Balasundaram, Ghayathri ;
Moothanchery, Mohesh ;
Dinish, U. S. ;
Bi, Renzhe ;
Ntziachristos, Vasilis ;
Olivo, Malini .
PHOTOACOUSTICS, 2019, 16
[8]   A Partially-Learned Algorithm for Joint Photo-acoustic Reconstruction and Segmentation [J].
Boink, Yoeri E. ;
Manohar, Srirang ;
Brune, Christoph .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) :129-139
[9]   End-to-end deep neural network for optica l inversion in quantitative photoacoustic imaging [J].
Cai, Chuangjian ;
Deng, Kexin ;
Ma, Cheng ;
Luo, Jianwen .
OPTICS LETTERS, 2018, 43 (12) :2752-2755
[10]   Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications [J].
Chen, CW ;
Luo, JB ;
Parker, KJ .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (12) :1673-1683