Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide

被引:14
作者
He, Jiakun [1 ]
Clark, Alex S. [1 ]
Collins, Matthew J. [1 ]
Li, Juntao [2 ]
Krauss, Thomas F. [3 ]
Eggleton, Benjamin J. [1 ]
Xiong, Chunle [1 ]
机构
[1] Univ Sydney, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Inst Photon & Opt Sci, Sch Phys, Sydney, NSW 2006, Australia
[2] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
SLOW-LIGHT; INTERFERENCE; FIBER; CHIP;
D O I
10.1364/OL.39.003575
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 m long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.001 pairs per pulse and 14 at a photon generation rate of 0.023 pairs per pulse, which are both higher than the useful level of 10. This demonstration provides a path to generate indistinguishable photons in an ultra-compact platform for future quantum photonic technologies. (C) 2014 Optical Society of America
引用
收藏
页码:3575 / 3578
页数:4
相关论文
共 50 条
[1]   Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006 [J].
Ma, Chaoxuan ;
Wang, Xiaoxi ;
Anant, Vikas ;
Beyer, Andrew D. ;
Shaw, Matthew D. ;
Mookherjea, Shayan .
OPTICS EXPRESS, 2017, 25 (26) :32995-33006
[2]   Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides [J].
Xiong, Chunle ;
Monat, Christelle ;
Collins, Matthew J. ;
Tranchant, Laurent ;
Petiteau, David ;
Clark, Alex S. ;
Grillet, Christian ;
Marshall, Graham D. ;
Steel, Michael J. ;
Li, Juntao ;
O'Faolain, Liam ;
Krauss, Thomas F. ;
Eggleton, Benjamin J. .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (06) :1676-1683
[3]   Parasitic Photon-Pair Suppression via Photonic Stop-Band Engineering [J].
Helt, L. G. ;
Branczyk, Agata M. ;
Liscidini, Marco ;
Steel, M. J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (07)
[4]   Direct generation of photon triplets using cascaded photon-pair sources [J].
Huebel, Hannes ;
Hamel, Deny R. ;
Fedrizzi, Alessandro ;
Ramelow, Sven ;
Resch, Kevin J. ;
Jennewein, Thomas .
NATURE, 2010, 466 (7306) :601-603
[5]   Telecom-band degenerate-frequency photon pair generation in silicon microring cavities [J].
Guo, Yuan ;
Zhang, Wei ;
Dong, Shuai ;
Huang, Yidong ;
Peng, Jiangde .
OPTICS LETTERS, 2014, 39 (08) :2526-2529
[6]   Optical emulation of photon-pair generation in nonlinear lossy waveguides [J].
Grafe, Markus ;
Antonosyan, Diana A. ;
Solntsev, Alexander S. ;
Sukhorukov, Andrey A. ;
Szameit, Alexander .
EPL, 2017, 118 (05)
[7]   Correlated photon pair generation in ultra-silicon-rich nitride waveguide [J].
Choi, Ju Won ;
Sohn, Byoung-Uk ;
Chen, George F. R. ;
Ng, Doris K. T. ;
Tan, Dawn T. H. .
OPTICS COMMUNICATIONS, 2020, 463
[8]   Raman scattering effects on correlated photon-pair generation in chalcogenide [J].
Clark, Alex S. ;
Collins, Matthew J. ;
Judge, Alexander C. ;
Maegi, Eric C. ;
Xiong, Chunle ;
Eggleton, Benjamin J. .
OPTICS EXPRESS, 2012, 20 (15) :16807-16814
[9]   Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide [J].
Husko, C. ;
Vo, T. D. ;
Corcoran, B. ;
Li, J. ;
Krauss, T. F. ;
Eggleton, B. J. .
OPTICS EXPRESS, 2011, 19 (21) :20681-20690
[10]   Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation [J].
Laiho, K. ;
Pressl, B. ;
Schlager, A. ;
Suchomel, H. ;
Kamp, M. ;
Hoefling, S. ;
Schneider, C. ;
Weihs, G. .
NANOTECHNOLOGY, 2016, 27 (43)