Critical Exponents in p-adic φ4-model

被引:0
作者
Missarov, Moukadas D. [1 ]
Stepanov, Roman G. [1 ]
机构
[1] Kazan VI Lenin State Univ, Dept Comp Math & Cybernet, Kazan 420008, Russia
来源
P-ADIC MATHEMATICAL PHYSICS | 2006年 / 826卷
关键词
renormalization group; critical exponents; p-adic space;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider phi(4)-model with O(N)-symmetry in d-dimensional p-adic space using the approach of renormalized projection Hamiltonians. Critical exponents v and eta are calculated up to three orders of perturbation theory using two types of expansions: (4 - d)-expansion and (alpha - 3/2d) -expansion, where alpha is a renormalization group parameter. Some resemblances and differences between the Euclidean and p-adic models are discussed.
引用
收藏
页码:129 / +
页数:2
相关论文
共 17 条
[1]  
[Anonymous], 1994, P ADIC ANAL MATH PHY
[2]   PARA-ADIC SUPERSTRINGS [J].
AREFEVA, IY ;
DRAGOVIC, BG ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1988, 214 (03) :339-349
[3]   THE EQUATIONS OF WILSON RENORMALIZATION-GROUP AND ANALYTIC RENORMALIZATION .1. GENERAL RESULTS [J].
BLEHER, PM ;
MISSAROV, MD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (03) :235-254
[4]   INVESTIGATION OF CRITICAL-POINT IN MODELS OF TYPE OF DYSONS HIERARCHICAL MODELS [J].
BLEHER, PM ;
SINAI, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (01) :23-42
[5]   P-ADIC NUMBERS IN PHYSICS [J].
BREKKE, L ;
FREUND, PGO .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01) :1-66
[6]   On p-adic and adelic generalization of quantum field theory [J].
Dragovich, B .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 :150-155
[7]  
Khrennikov A, 1994, P ADIC VALUED DISTRI
[8]  
Khrennikov A. Y., 1997, NONARCHIMEDEAN ANAL
[9]  
Kochubei A.N., 2001, PSEUDO DIFFERENTIAL
[10]   Continuum limit in the fermionic hierarchical model [J].
Missarov, MD .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 118 (01) :32-40