Occupation time large deviations of two-dimensional symmetric simple exclusion process

被引:0
作者
Chang, CC [1 ]
Landim, C
Lee, TY
机构
[1] Natl Taiwan Univ, Dept Math, Taipei, Taiwan
[2] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[3] Univ Rouen, CNRS, UPRES, F-76128 Mont St Aignan, France
关键词
exclusion process; hydrodynamic limit; large deviations; occupation time;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a large deviations principle for the occupation time of a site in the two-dimensional symmetric simple exclusion process. The decay probability rate is of order t/logt and the rate function is given by Y-alpha(beta) = (pi/2){sin(-1)(2beta - 1) - sin(-1) (2alpha - 1))(2). The proof relies on a large deviations principle for the polar empirical measure which contains an interesting log scale spatial average. A contraction principle permits us to deduce the occupation time large deviations from the large deviations for the polar empirical measure.
引用
收藏
页码:661 / 691
页数:31
相关论文
共 12 条
[2]  
Benois O, 1996, ANN APPL PROBAB, V6, P269
[3]   LARGE DEVIATIONS FROM THE HYDRODYNAMICAL LIMIT OF MEAN ZERO ASYMMETRIC ZERO-RANGE PROCESSES [J].
BENOIS, O ;
KIPNIS, C ;
LANDIM, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 55 (01) :65-89
[4]   OCCUPATION TIME LARGE DEVIATIONS OF THE VOTER MODEL [J].
BRAMSON, M ;
COX, JT ;
GRIFFEATH, D .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (03) :401-413
[5]   LARGE DEVIATIONS FOR POISSON SYSTEMS OF INDEPENDENT RANDOM-WALKS [J].
COX, JT ;
GRIFFEATH, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04) :543-558
[6]  
COX T, 1990, PROBAB THEORY REL, V84, P67
[7]  
Deuschel JD, 1998, ANN PROBAB, V26, P602
[8]  
KIPNIS C, 1987, ANN I H POINCARE-PR, V23, P21
[9]   HYDRODYNAMICS AND LARGE DEVIATION FOR SIMPLE EXCLUSION PROCESSES [J].
KIPNIS, C ;
OLLA, S ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (02) :115-137
[10]  
Kipnis C., 1999, GRUNDLHEREN MATH WIS, V320