Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli

被引:11
作者
Soparkar, Ketaki [1 ,2 ]
Kinana, Alfred D. [4 ]
Weeks, Jon W. [1 ,3 ]
Morrison, Keith D. [5 ]
Nikaido, Hiroshi [4 ]
Misra, Rajeev [1 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85281 USA
[2] CoValence Labs, Chandler, AZ USA
[3] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[5] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
基金
美国国家卫生研究院;
关键词
SITE-DIRECTED MUTAGENESIS; GRAM-NEGATIVE BACTERIA; TRANSPORTER ACRB; PSEUDOMONAS-AERUGINOSA; CRYSTAL-STRUCTURES; SUBSTRATE PATH; TOLC; MECHANISM; RESISTANCE; IDENTIFICATION;
D O I
10.1128/JB.00547-15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions-Y49S, V127A, V127G, D153E, and G288C-mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions-F453C and L486W-were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.
引用
收藏
页码:3255 / 3264
页数:10
相关论文
共 50 条
[41]   The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification [J].
Harmon, Dana E. ;
Ruiz, Cristian .
MSPHERE, 2022, 7 (06)
[42]   Role of a Conserved Residue R780 in Escherichia coli Multidrug Transporter AcrB [J].
Yu, Linliang ;
Lu, Wei ;
Ye, Cui ;
Wang, Zhaoshuai ;
Zhong, Meng ;
Chai, Qian ;
Sheetz, Michael ;
Wei, Yinan .
BIOCHEMISTRY, 2013, 52 (39) :6790-6796
[43]   Cu binding by the Escherichia coli metal-efflux accessory protein RcnB [J].
Bleriot, Camille ;
Gault, Manon ;
Gueguen, Erwan ;
Arnoux, Pascal ;
Pignol, David ;
Mandrand-Berthelot, Marie-Andree ;
Rodrigue, Agnes .
METALLOMICS, 2014, 6 (08) :1400-1409
[44]   Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB [J].
Eicher, Thomas ;
Seeger, Markus A. ;
Anselmi, Claudio ;
Zhou, Wenchang ;
Brandstaetter, Lorenz ;
Verrey, Francois ;
Diederichs, Kay ;
Faraldo-Gomez, Jose D. ;
Pos, Klaas M. .
ELIFE, 2014, 3
[45]   Use of resazurin to detect mefloquine as an efflux-pump inhibitor in Pseudomonas aeruginosa and Escherichia coli [J].
Vidal-Aroca, Faustino ;
Meng, Alexandra ;
Minz, Tanja ;
Page, Malcolm G. P. ;
Dreier, Juerg .
JOURNAL OF MICROBIOLOGICAL METHODS, 2009, 79 (02) :232-237
[46]   Repressive mutations restore function-loss caused by the disruption of trimerization in Escherichia coli multidrug transporter AcrB [J].
Wang, Zhaoshuai ;
Zhong, Meng ;
Lu, Wei ;
Chai, Qian ;
Wei, Yinan .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[47]   Export of a single drug molecule in two transport cycles by a multidrug efflux pump [J].
Fluman, Nir ;
Adler, Julia ;
Rotenberg, Susan A. ;
Brown, Melissa H. ;
Bibi, Eitan .
NATURE COMMUNICATIONS, 2014, 5
[48]   Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa [J].
Yamasaki, Seiji ;
Zwama, Martijn ;
Yoneda, Tomohiro ;
Hayashi-Nishino, Mitsuko ;
Nishino, Kunihiko .
MICROBIOLOGY-SGM, 2023, 169 (06)
[49]   Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance [J].
Mowla, Rumana ;
Wang, Yinhu ;
Ma, Shutao ;
Venter, Henrietta .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2018, 1860 (04) :878-886
[50]   Multidrug Efflux Pump MdtBC of Escherichia coli Is Active Only as a B2C Heterotrimer [J].
Kim, Hong-Suk ;
Nagore, Daniel ;
Nikaido, Hiroshi .
JOURNAL OF BACTERIOLOGY, 2010, 192 (05) :1377-1386