Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli

被引:11
作者
Soparkar, Ketaki [1 ,2 ]
Kinana, Alfred D. [4 ]
Weeks, Jon W. [1 ,3 ]
Morrison, Keith D. [5 ]
Nikaido, Hiroshi [4 ]
Misra, Rajeev [1 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85281 USA
[2] CoValence Labs, Chandler, AZ USA
[3] Univ Oklahoma, Dept Chem & Biochem, Norman, OK 73019 USA
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[5] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
基金
美国国家卫生研究院;
关键词
SITE-DIRECTED MUTAGENESIS; GRAM-NEGATIVE BACTERIA; TRANSPORTER ACRB; PSEUDOMONAS-AERUGINOSA; CRYSTAL-STRUCTURES; SUBSTRATE PATH; TOLC; MECHANISM; RESISTANCE; IDENTIFICATION;
D O I
10.1128/JB.00547-15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions-Y49S, V127A, V127G, D153E, and G288C-mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions-F453C and L486W-were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.
引用
收藏
页码:3255 / 3264
页数:10
相关论文
共 50 条
[21]   Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB [J].
Schuster, Sabine ;
Vavra, Martina ;
Kern, Winfried V. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (07) :4315-4323
[22]   Drug transport mechanism of the AcrB efflux pump [J].
Pos, Klaas M. .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2009, 1794 (05) :782-793
[23]   The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump [J].
Dai, Jian-Sheng ;
Xu, Jian ;
Shen, Hao-Jie ;
Chen, Ni-Pi ;
Zhu, Bing-Qi ;
Xue, Zheng-Jie ;
Chen, Hao-Han ;
Ding, Zhi-Shan ;
Ding, Rui ;
Qian, Chao-Dong .
MICROBIOLOGY SPECTRUM, 2024, 12 (01)
[24]   Determination of Real-Time Efflux Phenotypes in Escherichia coli AcrB Binding Pocket Phenylalanine Mutants Using a 1,2′-Dinaphthylamine Efflux Assay [J].
Bohnert, Juergen A. ;
Schuster, Sabine ;
Szymaniak-Vits, Magdalena ;
Kern, Winfried V. .
PLOS ONE, 2011, 6 (06)
[25]   Effect of site-directed mutations in multidrug efflux pump AcrB examined by quantitative efflux assays [J].
Kinana, Alfred D. ;
Vargiu, Attilio V. ;
Nikaido, Hiroshi .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 480 (04) :552-557
[26]   β-Lactam Selectivity of Multidrug Transporters AcrB and AcrD Resides in the Proximal Binding Pocket [J].
Kobayashi, Naoki ;
Tamura, Norihisa ;
van Veen, Hendrik W. ;
Yamaguchi, Akihito ;
Murakami, Satoshi .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (15) :10680-10690
[27]   Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-ToIC Multidrug Efflux Pump [J].
Abdali, Narges ;
Parks, Jerry M. ;
Haynes, Keith M. ;
Chaney, Julie L. ;
Green, Adam T. ;
Wolloscheck, David ;
Walker, John K. ;
Rybenkov, Valentin V. ;
Baudry, Jerome ;
Smith, Jeremy C. ;
Zgurskaya, Helen I. .
ACS INFECTIOUS DISEASES, 2017, 3 (01) :89-98
[28]   Exploring the Contribution of the AcrB Homolog MdtF to Drug Resistance and Dye Efflux in a Multidrug Resistant E. coli Isolate [J].
Schuster, Sabine ;
Vavra, Martina ;
Greim, Ludwig ;
Kern, Winfried V. .
ANTIBIOTICS-BASEL, 2021, 10 (05)
[29]   Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump [J].
Kinana, Alfred D. ;
Vargiu, Attilio V. ;
May, Thithiwat ;
Nikaido, Hiroshi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1405-1410
[30]   The Escherichia coli TolC efflux pump protein is immunogenic and elicits protective antibodies [J].
Silva, Thaynara O. ;
Teixeira, Barbara A. ;
Costa, Leon V. S. ;
Barbosa, Luiza S. ;
do Nascimento, Lucas C. ;
Fanticelli, Joao G. C. ;
Rotilho, Caroline ;
Branco, Rafael V. C. ;
Silva, Lucas S. ;
Ferreira, Maria E. ;
Costa, Thais L. ;
Monteiro, Sanderson, V ;
dos Santos Abreu, Juliana ;
Rajsfus, Bia F. ;
Bulla, Ana Carolina S. ;
Carneiro, Jordanna ;
Allonso, Diego ;
Salgado, Diamantino R. ;
Echevarria-Lima, Juliana ;
da Silva, Manuela Leal ;
Moreira, Lilian O. ;
Olsen, Priscilla C. .
JOURNAL OF LEUKOCYTE BIOLOGY, 2024, 116 (06) :1398-1411