Electro-spun Membranes as Scaffolds for Human Corneal Endothelial Cells

被引:51
作者
Kruse, Magnus [1 ,2 ]
Walter, Peter [3 ]
Bauer, Benedict [1 ,2 ]
Ruetten, Stephan [4 ]
Schaefer, Karola [5 ,6 ]
Plange, Niklas [3 ]
Gries, Thomas [1 ,2 ]
Jockenhoevel, Stefan [1 ,2 ]
Fuest, Matthias [3 ]
机构
[1] Rhein Westfal TH Aachen, AME Helmholtz Inst Biomed Engn, Dept Biohybrid & Med Text BioTex, Aachen, Germany
[2] Rhein Westfal TH Aachen, ITA, Aachen, Germany
[3] Rhein Westfal TH Aachen, Dept Ophthalmol, Pauwelsstr 30, D-52074 Aachen, Germany
[4] Univ Hosp RWTH, Dept Electron Microscopy, Aachen, Germany
[5] Rhein Westfal TH Aachen, DWI Leibniz Inst Interact Mat eV, Aachen, Germany
[6] Rhein Westfal TH Aachen, ITMC, Aachen, Germany
关键词
Cornea; endothelial cells; scaffold; tissue engineering; electro-spinning; EPITHELIAL-CELLS; IN-VITRO; POLY(METHYL METHACRYLATE); NANOFIBROUS SCAFFOLDS; CLINICAL-APPLICATION; CROSS-LINKING; TRANSPLANTATION; DEGRADATION; POLY(LACTIDE-CO-GLYCOLIDE); PROLIFERATION;
D O I
10.1080/02713683.2017.1377258
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background: Corneal endothelial dysfunction remains the most frequent indication for corneal transplantation, limited by donor material shortage, poor long-term graft survival, or allogeneic graft rejection. Therefore, tissue-engineered endothelial grafts (TEEG) represent a promising alternative to human donor tissue. In this study, we generated electro-spun scaffolds and tested these for their suitability for human corneal endothelial cell (hCEC) cultivation. Methods: The polymers poly(methyl-methacrylate) (PMMA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL) were spun with equal parameters. HCEC-12 was cultured on the scaffolds for 3 to 7 days. Scaffolds were evaluated by light microscopy, porometry, light transmission, scanning electron microscopy (SEM), live/dead staining and cell viability assay. Results: Electro-spun fibers from PMMA (2.99 +/- 0.24 mu m) showed significantly higher diameters than PCL (2.29 +/- 0.11 mu m; p = 0.003) and PLGA (1.84 +/- 0.21 mu m; p < 0.001), while fibers from PCL also showed larger diameters than those from PLGA (p = 0.002). PMMA scaffolds (26.77 +/- 17.48 mu m) had significantly larger interstitial spaces than those from PCL (13.30 +/- 5.47 mu m; p = 0.04) and PLGA (10.42 +/- 6.15 mu m; p = 0.002), while PCL and PLGA did not differ significantly (p = 0.26). SEM analysis revealed that only PLGA fibers preserved a normal HCEC-12 morphology. PLGA and PCL did not differ in cell number, death, or viability after 7 days of HCEC-12 cultivation. PMMA showed significantly higher cytotoxicity (p < 0.001; PLGA: 1626.2 +/- 183.8 RLU; PMMA: 841.9 +/- 92.7 RLU; PCL: 1580.2 +/- 171.02 RLU). Conclusions: The biodegradable PLGA and PCL electro-spun scaffolds resulted in equal biocompatibility, while PMMA showed cytotoxicity. Only PLGA preserved hCEC morphology and consequently seems to be a promising candidate for TEEG construction.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 57 条
[31]   Fabrication and characters of a corneal endothelial cells scaffold based on chitosan [J].
Liang, Ye ;
Liu, Wanshun ;
Han, Baoqin ;
Yang, Chaozhong ;
Ma, Qun ;
Zhao, Weiwei ;
Rong, Mi ;
Li, Hui .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (01) :175-183
[32]   Electrospinning versus fibre production methods: from specifics to technological convergence [J].
Luo, C. J. ;
Stoyanov, Simeon D. ;
Stride, E. ;
Pelan, E. ;
Edirisinghe, M. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (13) :4708-4735
[33]   Corneal epithelialisation on surface-modified hydrogel implants Artificial cornea [J].
Ma, Aihua ;
Zhao, Bojun ;
Bentley, Adam J. ;
Brahma, Arun ;
MacNeil, Sheila ;
Martin, Francis L. ;
Rimmer, Stephen ;
Fullwood, Nigel J. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (03) :663-670
[34]   Three decades of corneal transplantation: Indications and patient characteristics [J].
Maeno, A ;
Naor, J ;
Lee, HM ;
Hunter, WS ;
Rootman, DS .
CORNEA, 2000, 19 (01) :7-11
[35]   Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering [J].
Meng, Z. X. ;
Wang, Y. S. ;
Ma, C. ;
Zheng, W. ;
Li, L. ;
Zheng, Y. F. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (08) :1204-1210
[36]   Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells [J].
Muhammad, Rizwan ;
Peh, Gary S. L. ;
Adnan, Khadijah ;
Law, Jaslyn B. K. ;
Mehta, Jodhbir S. ;
Yim, Evelyn K. F. .
ACTA BIOMATERIALIA, 2015, 19 :138-148
[37]   Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets [J].
Nitschke, Mirko ;
Gramm, Stefan ;
Goetze, Thomas ;
Valtink, Monika ;
Drichel, Juliane ;
Voit, Brigitte ;
Engelmann, Katrin ;
Werner, Carsten .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 80A (04) :1003-1010
[38]  
Nose W, 1996, J REFRACT SURG, V12, P20
[39]   Biodegradable and Biocompatible Poly(Ethylene Glycol)-based Hydrogel Films for the Regeneration of Corneal Endothelium [J].
Ozcelik, Berkay ;
Brown, Karl D. ;
Blencowe, Anton ;
Ladewig, Katharina ;
Stevens, Geoffrey W. ;
Scheerlinck, Jean-Pierre Y. ;
Abberton, Keren ;
Daniell, Mark ;
Qiao, Greg G. .
ADVANCED HEALTHCARE MATERIALS, 2014, 3 (09) :1496-1507
[40]   In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates [J].
Palchesko, Rachelle N. ;
Lathrop, Kira L. ;
Funderburgh, James L. ;
Feinberg, Adam W. .
SCIENTIFIC REPORTS, 2015, 5