Adiabatic cooling of bosons in lattices to magnetically ordered quantum states

被引:20
作者
Schachenmayer, Johannes [1 ]
Weld, David M. [2 ,3 ,4 ]
Miyake, Hirokazu [4 ]
Siviloglou, Georgios A. [4 ]
Ketterle, Wolfgang [4 ]
Daley, Andrew J. [5 ,6 ,7 ]
机构
[1] Univ Colorado, NIST, Joint Inst Lab Astrophys, Dept Phys, Boulder, CO 80309 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Calif Inst Quantum Emulat, Santa Barbara, CA 93106 USA
[4] MIT, Dept Phys, Elect Res Lab, MIT Harvard Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[5] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[6] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[7] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 04期
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; MOTION; ATOMS;
D O I
10.1103/PhysRevA.92.041602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We suggest and analyze a scheme to adiabatically cool bosonic atoms to picokelvin temperatures which should allow the observation of magnetic ordering via superexchange in optical lattices. The starting point is a gapped phase called the spin Mott phase, where each site is occupied by one spin-up and one spin-down atom. An adiabatic ramp leads to an xy-ferromagnetic phase. We show that the combination of time-dependent density matrix renormalization group methods with quantum trajectories can be used to fully address possible experimental limitations due to decoherence, and demonstrate that the magnetic correlations are robust for experimentally realizable ramp speeds. Using a microscopic master equation treatment of light scattering in the many-particle system, we test the robustness of adiabatic state preparation against decoherence. Due to different ground-state symmetries, we also find a metastable state with xy-ferromagnetic order if the ramp crosses to regimes where the ground state is a z ferromagnet. The bosonic spin Mott phase as the initial gapped state for adiabatic cooling has many features in common with a fermionic band insulator, but the use of bosons should enable experiments with substantially lower initial entropies.
引用
收藏
页数:6
相关论文
共 42 条
  • [1] Phase diagram of two-component bosons on an optical lattice
    Altman, E
    Hofstetter, W
    Demler, E
    Lukin, MD
    [J]. NEW JOURNAL OF PHYSICS, 2003, 5 : 113.1 - 113.19
  • [2] Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
  • [3] Critical entropies for magnetic ordering in bosonic mixtures on a lattice
    Capogrosso-Sansone, B.
    Soyler, S. G.
    Prokof'ev, N. V.
    Svistunov, B. V.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [4] Ground-state phase diagram of S=1 XXZ chains with uniaxial single-ion-type anisotropy -: art. no. 104401
    Chen, W
    Hida, K
    Sanctuary, BC
    [J]. PHYSICAL REVIEW B, 2003, 67 (10) : 7
  • [5] Goals and opportunities in quantum simulation
    Cirac, J. Ignacio
    Zoller, Peter
    [J]. NATURE PHYSICS, 2012, 8 (04) : 264 - 266
  • [6] Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005
    Daley, AJ
    Kollath, C
    Schollwöck, U
    Vidal, G
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [7] Quantum trajectories and open many-body quantum systems
    Daley, Andrew J.
    [J]. ADVANCES IN PHYSICS, 2014, 63 (02) : 77 - 149
  • [8] ATOMIC MOTION IN LASER-LIGHT - CONNECTION BETWEEN SEMICLASSICAL AND QUANTUM DESCRIPTIONS
    DALIBARD, J
    COHENTANNOUDJI, C
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1985, 18 (08) : 1661 - 1683
  • [9] Effective spin quantum phases in systems of trapped ions
    Deng, XL
    Porras, D
    Cirac, JI
    [J]. PHYSICAL REVIEW A, 2005, 72 (06):
  • [10] Optimal Control Technique for Many-Body Quantum Dynamics
    Doria, Patrick
    Calarco, Tommaso
    Montangero, Simone
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (19)