Monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries

被引:70
作者
Wang, Zhiyuan [1 ,2 ,3 ]
Dong, Kangze [1 ]
Wang, Dan [1 ,2 ,3 ]
Chen, Fang [2 ]
Luo, Shaohua [1 ,2 ,3 ]
Liu, Yanguo [1 ,2 ,3 ]
He, Chunnian [4 ]
Shi, Chunsheng [4 ]
Zhao, Naiqin [4 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Hebei, Peoples R China
[3] Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao, Hebei, Peoples R China
[4] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Tin-based; Porous carbon networks; Anode; Lithium ion batteries; Sodium ion batteries; LITHIUM-ION; COMPOSITE NANOFIBERS; TIN NANOPARTICLES; SEI FORMATION; HIGH-CAPACITY; NANOSHEETS; EVOLUTION; FIBERS; ALLOY;
D O I
10.1016/j.cej.2019.04.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tin-based materials have attracted intensive attention as promising high-capacity anodes for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). However, they suffer from serious capacity fading owing to the inherent huge volume changes and sluggish kinetics. Herein, we propose a facile and scalable self-assembly NaCl template-assisted in situ catalytic strategy for preparing monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles (10-30 nm) space-confined in three-dimensional (3D) graphene-like porous carbon networks. In the unique nanostructure, the synergistic effect of Sn and Sb and abundant free space provided by porous carbon network effectively relieves the volume change, the amorphous SnOx/SbOx shell enhances the interface interaction between SnSb and carbon as well as facilitates ion diffusion, the graphitic carbon shells and the 3D graphene-like carbon network with high mechanical flexibility not only inhibits the aggregation and pulverization of SnSb, but also improves the integrity and conductivity of electrode. Thus, the nanocomposite electrode deliver a high specific capacity, superior rate capability (337.3 mAh g(-1) and 244.3 mAh g(-1) at 5 A g(-1) for LIBs and SIBs, respectively), and excellent cycling stability (capacity retention of 93% after 200 cycles at 1 A g(-1) for LIBs; capacity retention of 80% after 500 cycles at 2 A g(-1) for SIBs). This work provides new strategy for the design and fabrication of nanocomposite with robust interface interaction for electrochemical energy conversion and storage application.
引用
收藏
页码:356 / 365
页数:10
相关论文
共 52 条
[1]   A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries [J].
Agubra, Victor A. ;
Zuniga, Luis ;
Flores, David ;
Campos, Howard ;
Villarreal, Jahaziel ;
Alcoutlabi, Mataz .
ELECTROCHIMICA ACTA, 2017, 224 :608-621
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   Electrochemical Activity of Dendrimer-Stabilized Tin Nanoparticles for Lithium Alloying Reactions [J].
Bhandari, Rohit ;
Anderson, Rachel M. ;
Stauffer, Shannon ;
Dylla, Anthony G. ;
Henkeman, Graeme ;
Stevenson, Keith J. ;
Crooks, Richard M. .
LANGMUIR, 2015, 31 (23) :6570-6576
[4]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[5]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[6]   2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries [J].
Chen, Biao ;
Liu, Enzuo ;
He, Fang ;
Shi, Chunsheng ;
He, Chunnian ;
Li, Jiajun ;
Zhao, Naiqin .
NANO ENERGY, 2016, 26 :541-549
[7]   Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries [J].
Chen, Shuangqiang ;
Chen, Peng ;
Wu, Minghong ;
Pan, Dengyu ;
Wang, Yong .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (10) :1302-1306
[8]   Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes [J].
Choi, Jaewon ;
Myung, Yoon ;
Gu, Min Guk ;
Kim, Sung-Kon .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 71 :345-350
[9]   Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery [J].
Eom, KwangSup ;
Jung, Jaehan ;
Lee, Jung Tae ;
Lair, Valentin ;
Joshi, Tapesh ;
Lee, Seung Woo ;
Lin, Zhiqun ;
Fuller, Thomas F. .
NANO ENERGY, 2015, 12 :314-321
[10]   Anodes for Sodium Ion Batteries Based on Tin-Germanium-Antimony Alloys [J].
Farbod, Behdokht ;
Cui, Kai ;
Kalisvaart, W. Peter ;
Kupsta, Martin ;
Zahiri, Benjamin ;
Kohandehghan, Alireza ;
Lotfabad, Elmira Memarzadeh ;
Li, Zhi ;
Luber, Erik J. ;
Mitlin, David .
ACS NANO, 2014, 8 (05) :4415-4429