Topological (dark) soliton solutions for the Camassa-Holm type equations

被引:30
作者
Bekir, Ahmet [1 ]
Guner, Ozkan [2 ]
机构
[1] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math & Comp Sci, Eskisehir, Turkey
[2] Dumlupinar Univ, Sch Appl Sci, Dept Management Informat Syst, Kutahya, Turkey
关键词
Solitons; Topological soliton solutions; Modified Camassa-Holm equation; General improved Camassa Holm KP equation; TRAVELING-WAVE SOLUTIONS; F-EXPANSION METHOD; NONLINEAR EVOLUTION; TANH METHOD; (G'/G)-EXPANSION METHOD; DEGASPERIS-PROCESI; KDV; FORMS;
D O I
10.1016/j.oceaneng.2013.10.002
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, the topological (dark) soliton solutions to the Camassa-Holm type equations are obtained by the solitary wave ansatz method. This solution may be useful to explain some physical phenomena in genuinely nonlinear dynamical systems that are described by Camassa-Holm type models. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:276 / 279
页数:4
相关论文
共 39 条
[1]   The extended F-expansion method and its application for a class of nonlinear evolution equations [J].
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :95-104
[2]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[3]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[4]   New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method [J].
Bekir, Ahmet .
PHYSICA SCRIPTA, 2008, 77 (04)
[5]   Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity [J].
Biswas, A. ;
Triki, H. ;
Labidi, M. .
PHYSICS OF WAVE PHENOMENA, 2011, 19 (01) :24-29
[6]   New exact travelling wave solutions using modified extended tanh-function method [J].
El-Wakil, S. A. ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :840-852
[7]   On the generalized Kadomtsev-Petviashvili equation with generalized evolution and variable coefficients [J].
Esfahani, Amin .
PHYSICS LETTERS A, 2010, 374 (35) :3635-3645
[8]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[9]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[10]   The first-integral method to study the Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02) :343-349