Numerical investigation of the influence of cooling flux on the generation of dislocations in cylindrical mono-like silicon growth

被引:24
作者
Gao, B. [1 ]
Kakimoto, K. [1 ]
机构
[1] Kyushu Univ, Res Inst Appl Mech, Kasuga, Fukuoka 8168580, Japan
关键词
Computer simulation; Directional solidification; Semiconducting silicon; Solar cells; EFFICIENCY SOLAR-CELLS; FLOATING-ZONE GROWTH; MAGNETIC-FIELDS; DIRECTIONAL SOLIDIFICATION; MONOCRYSTALLINE SILICON; MULTICRYSTALLINE SILICON; PLASTIC-DEFORMATION; CZOCHRALSKI GROWTH; DENSITY ANALYSIS; MELT CONVECTION;
D O I
10.1016/j.jcrysgro.2013.09.002
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
To effectively reduce dislocations during seeded growth of cylindrical monocrystalline-like silicon by controlling the cooling flux, the relationship between the generation of dislocations and cooling flux has been numerically studied. The results show that the generation of dislocations is determined by the cooling flux difference, not by the cooling flux inside the crystal. Good control of the input and output cooling fluxes during practical crystal growth is essential to reduce the generation of dislocations. Further analysis shows that the cooling flux difference in the radial or axial direction is linearly related to the square root of the maximum dislocation density. In other words, a linear decrease of the cooling flux difference in the radial or axial direction results in a quadratic decrease of the maximum dislocation density. Therefore, the most effective method to reduce dislocations during the cooling process is to decrease the cooling flux difference between the input and output fluxes, i.e., to decrease the energy accumulation or dissipation rate inside the whole crystal. (C) 2013 Elsevier B.V. All rights reserved
引用
收藏
页码:13 / 20
页数:8
相关论文
共 32 条
[1]   Time-dependent simulation of the growth of large silicon crystals by the Czochralski technique using a turbulent model for melt convection [J].
Assaker, R ;
VandenBogaert, N ;
Dupret, F .
JOURNAL OF CRYSTAL GROWTH, 1997, 180 (3-4) :450-460
[2]  
BEHNKEN H, 2009, P 24 EUR PHOT SOL EN, P1281
[3]   Optimizing seeded casting of mono-like silicon crystals through numerical simulation [J].
Black, Andres ;
Medina, Juan ;
Pineiro, Axa ;
Dieguez, Ernesto .
JOURNAL OF CRYSTAL GROWTH, 2012, 353 (01) :12-16
[4]   Constitutive modeling of intrinsic silicon monocrystals in easy glide [J].
Cochard, J. ;
Yonenaga, I. ;
Gouttebroze, S. ;
M'Hamdi, M. ;
Zhang, Z. L. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[5]   DISLOCATION DYNAMICS OF WEB TYPE SILICON RIBBON [J].
DILLON, OW ;
TSAI, CT ;
DEANGELIS, RJ .
JOURNAL OF CRYSTAL GROWTH, 1987, 82 (1-2) :50-59
[6]   Floating zone growth of silicon in magnetic fields:: IV.: Rotating magnetic fields [J].
Dold, P ;
Cröll, A ;
Lichtensteiger, M ;
Kaiser, T ;
Benz, KW .
JOURNAL OF CRYSTAL GROWTH, 2001, 231 (1-2) :95-106
[7]   Floating-zone growth of silicon in magnetic fields - I. Weak static axial fields [J].
Dold, P ;
Croll, A ;
Benz, KW .
JOURNAL OF CRYSTAL GROWTH, 1998, 183 (04) :545-553
[8]   Influence of furnace design on the thermal stress during directional solidification of multicrystalline silicon [J].
Fang, H. S. ;
Wang, S. ;
Zhou, L. ;
Zhou, N. G. ;
Lin, M. H. .
JOURNAL OF CRYSTAL GROWTH, 2012, 346 (01) :5-11
[9]   Effect of Cooling Rate on the Activation of Slip Systems in Seed Cast-Grown Monocrystalline Silicon in the [001] and [111] Directions [J].
Gao, B. ;
Nakano, S. ;
Harada, H. ;
Miyamura, Y. ;
Kakimoto, K. .
CRYSTAL GROWTH & DESIGN, 2013, 13 (06) :2661-2669
[10]   Highly efficient and stable implementation of the Alexander-Haasen model for numerical analysis of dislocation in crystal growth [J].
Gao, B. ;
Nakano, S. ;
Kakimoto, K. .
JOURNAL OF CRYSTAL GROWTH, 2013, 369 :32-37