Globalizations of partial actions on nonunital rings

被引:32
作者
Dokuchaev, Michael [1 ]
Del Rio, Angel
Simon, Juan Jacobo
机构
[1] Univ Sao Paulo, Dept Matemat, BR-05508 Sao Paulo, Brazil
[2] Univ Murcia, Dept Matemat, E-30001 Murcia, Spain
关键词
D O I
10.1090/S0002-9939-06-08503-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we prove a criteria for the existence of a globalization for a given partial action of a group on an s-unital ring. If the globalization exists, it is unique in a natural sense. This extends the globalization theorem from Dokuchaev and Exel, 2005, obtained in the context of rings with 1.
引用
收藏
页码:343 / 352
页数:10
相关论文
共 19 条
[11]   Partial actions of groups and actions of inverse semigroups [J].
Exel, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) :3481-3494
[12]   Twisted partial actions: A classification of regular C*-algebraic bundles [J].
Exel, R .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 74 :417-443
[13]  
FERRERO M, PARTIAL ACTIONS GROU
[14]   MORITA EQUIVALENCE FOR IDEMPOTENT RINGS [J].
GARCIA, JL ;
SIMON, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 76 (01) :39-56
[15]   Partial actions of groups [J].
Kellendonk, J ;
Lawson, MV .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2004, 14 (01) :87-114
[16]   K-THEORY FOR PARTIAL CROSSED-PRODUCTS BY DISCRETE-GROUPS [J].
MCCLANAHAN, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (01) :77-117
[17]  
MURPHY GJ, 1990, C ALGEBRAS OPERATOR
[18]   Partial actions of groups on cell complexes [J].
Steinberg, B .
MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02) :159-170
[19]  
Wisbauer, 1991, FDN MODULE RING THEO