Komls properties in Banach lattices

被引:4
作者
Emelyanov, E. Y. [1 ,3 ]
Erkursun-Ozcan, N. [2 ]
Gorokhova, S. G. [3 ]
机构
[1] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
Banach lattice; o-convergence; uo-convergence; un-convergence; Komlos property; Komlos set; space of continuous functions;
D O I
10.1007/s10474-018-0852-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several Komls like properties in Banach lattices are investigated. We prove that C(K) fails the -pre-Komls property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komls set C which is not uo-Komls.
引用
收藏
页码:324 / 331
页数:8
相关论文
共 7 条
  • [1] Aliprantis C.D., 2003, Mathematical Surveys and Monographs, V105
  • [2] Burkinshaw O., 1985, Positive Operators
  • [3] Unbounded norm convergence in Banach lattices
    Deng, Y.
    O'Brien, M.
    Troitsky, V. G.
    [J]. POSITIVITY, 2017, 21 (03) : 963 - 974
  • [4] UO-CONVERGENCE AND ITS APPLICATIONS TO CESARO MEANS IN BANACH LATTICES
    Gao, N.
    Troitsky, V. G.
    Xanthos, F.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) : 649 - 689
  • [5] Unbounded norm topology in Banach lattices
    Kandic, M.
    Marabeh, M. A. A.
    Troitsky, V. G.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) : 259 - 279
  • [6] A GENERALIZATION OF A PROBLEM OF STEINHAUS
    KOMLOS, J
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 217 - &
  • [7] A CONVERSE TO A THEOREM OF KOMLOS FOR CONVEX SUBSETS OF L(1)
    LENNARD, C
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (01) : 75 - 85