Komls properties in Banach lattices

被引:4
作者
Emelyanov, E. Y. [1 ,3 ]
Erkursun-Ozcan, N. [2 ]
Gorokhova, S. G. [3 ]
机构
[1] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
关键词
Banach lattice; o-convergence; uo-convergence; un-convergence; Komlos property; Komlos set; space of continuous functions;
D O I
10.1007/s10474-018-0852-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several Komls like properties in Banach lattices are investigated. We prove that C(K) fails the -pre-Komls property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komls set C which is not uo-Komls.
引用
收藏
页码:324 / 331
页数:8
相关论文
共 7 条
[1]  
Aliprantis C.D., 2003, Mathematical Surveys and Monographs, V105
[2]  
Burkinshaw O., 1985, Positive Operators
[3]   Unbounded norm convergence in Banach lattices [J].
Deng, Y. ;
O'Brien, M. ;
Troitsky, V. G. .
POSITIVITY, 2017, 21 (03) :963-974
[4]   UO-CONVERGENCE AND ITS APPLICATIONS TO CESARO MEANS IN BANACH LATTICES [J].
Gao, N. ;
Troitsky, V. G. ;
Xanthos, F. .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (02) :649-689
[5]   Unbounded norm topology in Banach lattices [J].
Kandic, M. ;
Marabeh, M. A. A. ;
Troitsky, V. G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) :259-279
[6]   A GENERALIZATION OF A PROBLEM OF STEINHAUS [J].
KOMLOS, J .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :217-&
[7]   A CONVERSE TO A THEOREM OF KOMLOS FOR CONVEX SUBSETS OF L(1) [J].
LENNARD, C .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (01) :75-85