A novel approach for object-based change image generation using multitemporal high-resolution SAR images

被引:18
|
作者
Yousif, Osama [1 ]
Ban, Yifang [1 ]
机构
[1] KTH, Royal Inst Technol, Dept Urban Planning & Environm, Div Geoinformat, Stockholm, Sweden
关键词
URBAN CHANGE DETECTION; FUSION;
D O I
10.1080/01431161.2016.1217442
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Object-based change detection offers a unique approach for high-resolution images to capture meaningful detailed change information while suppressing noise in change detection results. In this approach, mean intensities of objects are commonly used as a feature and images comparison is carried out based on simple mathematical operations such as ratioing. The strong intensity variations within an object - a consequence of high spatial resolution - combined with synthetic aperture radar (SAR) image speckle degrade the accuracy of object mean intensity estimate, and consequently, affect the quality of the estimated object-based change image. A change quantification approach that takes into account the characteristics of high-resolution SAR images, that is, SAR speckle and the strong intensity variation, is proposed. By descending to the pixel level, a new representation of change data (i.e. the change signal) is proposed. With this representation, change quantification boils down to measuring the roughness of the change signal. Two techniques to assess the intensity of change at the object-level, based on Fourier and wavelet transforms (WT) of the change signal, are proposed. Their main advantages lie in their ability to capture the dominant change behaviour of the object, while being insusceptible to irrelevant disturbances. The proposed approach is evaluated using two multitemporal data sets of TerraSAR-X images acquired over Beijing and Shanghai. The qualitative and quantitative analyses of the results demonstrate the superior discrimination power of the proposed change variables compared with the object-based modified ratio (MR) and the absolute log ratio (LR) images.
引用
收藏
页码:1765 / 1787
页数:23
相关论文
共 42 条
  • [1] Object-Based Urban Change Detection Using High Resolution SAR Images
    Yousif, Osama
    Ban, Yifang
    2015 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2015,
  • [2] Improving Pixel-Based Change Detection Accuracy Using an Object-Based Approach in Multitemporal SAR Flood Images
    Lu, Jun
    Li, Jonathan
    Chen, Gang
    Zhao, Linjun
    Xiong, Boli
    Kuang, Gaoyao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) : 3486 - 3496
  • [3] A Multisquint Framework for Change Detection in High-Resolution Multitemporal SAR Images
    Dominguez, Elias Mendez
    Meier, Erich
    Small, David
    Schaepman, Michael E.
    Bruzzone, Lorenzo
    Henke, Daniel
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3611 - 3623
  • [4] Building Change Detection in Multitemporal Very High Resolution SAR Images
    Marin, Carlo
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05): : 2664 - 2682
  • [5] Object-Based Change Detection of Very High Resolution Satellite Imagery Using the Cross-Sharpening of Multitemporal Data
    Wang, Biao
    Choi, Seokkeun
    Byun, Younggi
    Lee, Soungki
    Choi, Jaewan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1151 - 1155
  • [6] Object-based multiscale method for SAR image change detection
    Wan, Ling
    Zhang, Tao
    You, Hongjian
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02)
  • [7] Object-based feature selection using class-pair separability for high-resolution image classification
    Su, Tengfei
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (01) : 238 - 271
  • [8] Object-based Urban Change Detection Analyzing High Resolution Optical Satellite Images
    Boldt, Markus
    Thiele, Antje
    Schulz, Karsten
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS III, 2012, 8538
  • [9] OBJECT-BASED FEATURE EXTRACTION AND SEMI-SUPERVISED CLASSIFICATION FOR URBAN CHANGE DETECTION USING HIGH-RESOLUTION REMOTE SENSING IMAGES
    Hou, Bin
    Liu, Qingjie
    Wang, Yunhong
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1674 - 1677
  • [10] HYBRID OPTIMIZATION OF OBJECT-BASED CLASSIFICATION IN HIGH-RESOLUTION IMAGES USING CONTINOUS ANT COLONY ALGORITHM WITH EMPHASIS ON BUILDING DETECTION
    Tamimi, E.
    Ebadi, H.
    Kiani, A.
    ISPRS INTERNATIONAL JOINT CONFERENCES OF THE 2ND GEOSPATIAL INFORMATION RESEARCH (GI RESEARCH 2017); THE 4TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING (SMPR 2017); THE 6TH EARTH OBSERVATION OF ENVIRONMENTAL CHANGES (EOEC 2017), 2017, 42-4 (W4): : 271 - 279