Bounds for integration matrices that arise in Gauss and Radau collocation

被引:18
作者
Chen, Wanchun [1 ]
Du, Wenhao [1 ]
Hager, William W. [2 ]
Yang, Liang [1 ]
机构
[1] Beihang Univ, Sch Astronaut, 37 Xueyuan Rd, Beijing, Peoples R China
[2] Univ Florida, Dept Math, POB 118105, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Integration matrix; Differentiation matrix; Gauss quadrature; Radau quadrature; Collocation methods; CONVERGENCE RATE;
D O I
10.1007/s10589-019-00099-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Bounds are established for integration matrices that arise in the convergence analysis of discrete approximations to optimal control problems based on orthogonal collocation. Weighted Euclidean norm bounds are derived for both Gauss and Radau integration matrices; these weighted norm bounds yield sup-norm bounds in the error analysis.
引用
收藏
页码:259 / 273
页数:15
相关论文
共 14 条
[1]  
AxELSSON O., 1964, BIT, V4, P69
[2]   Direct trajectory optimization and costate estimation via an orthogonal collocation method [J].
Benson, David A. ;
Huntington, Geoffrey T. ;
Thorvaldsen, Tom P. ;
Rao, Anil V. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) :1435-1440
[3]   Computational Method for Optimal Guidance and Control Using Adaptive Gaussian Quadrature Collocation [J].
Dennis, Miriam E. ;
Hager, William W. ;
Rao, Anil, V .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (09) :2026-2041
[4]   Costate approximation in optimal control using integral Gaussian quadrature orthogonal collocation methods [J].
Francolin, Camila C. ;
Benson, David A. ;
Hager, William W. ;
Rao, Anil V. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (04) :381-397
[5]   Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method [J].
Garg, Divya ;
Patterson, Michael A. ;
Francolin, Camila ;
Darby, Christopher L. ;
Huntington, Geoffrey T. ;
Hager, William W. ;
Rao, Anil V. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (02) :335-358
[6]   Pseudospectral methods for solving infinite-horizon optimal control problems [J].
Garg, Divya ;
Hager, William W. ;
Rao, Anil V. .
AUTOMATICA, 2011, 47 (04) :829-837
[7]   A unified framework for the numerical solution of optimal control problems using pseudospectral methods [J].
Garg, Divya ;
Patterson, Michael ;
Hager, William W. ;
Rao, Anil V. ;
Benson, David A. ;
Huntington, Geoffrey T. .
AUTOMATICA, 2010, 46 (11) :1843-1851
[8]   CONVERGENCE RATE FOR A GAUSS COLLOCATION METHOD APPLIED TO CONSTRAINED OPTIMAL CONTROL [J].
Hager, William W. ;
Liu, Jun ;
Mohapatra, Subhashree ;
Rao, Anil V. ;
Wang, Xiang-Sheng .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) :1386-1411
[9]   Lebesgue constants arising in a class of collocation methods [J].
Hager, William W. ;
Hou, Hongyan ;
Rao, Anil V. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (04) :1884-1901
[10]   Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control [J].
Hager, WilliamW. ;
Hou, Hongyan ;
Rao, Anil V. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (03) :801-824