Defining quantum divergences via convex optimization

被引:20
作者
Fawzi, Hamza [1 ]
Fawzi, Omar [2 ]
机构
[1] Univ Cambridge, DAMTP, Cambridge, England
[2] Univ Lyon, ENS Lyon, UCBL, CNRS,Inria,LIP, F-69342 Lyon 07, France
来源
QUANTUM | 2021年 / 5卷
关键词
RELATIVE ENTROPY; BOUNDS; COMMUNICATION; PRIVATE;
D O I
10.22331/q-2021-01-26-387
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a new quantum Renyi divergence D-alpha(#) for alpha is an element of (1, infinity) defined in terms of a convex optimization program. This divergence has several desirable computational and operational properties such as an efficient semidefinite programming representation for states and channels, and a chain rule property. An important property of this new divergence is that its regularization is equal to the sandwiched (also known as the minimal) quantum Renyi divergence. This allows us to prove several results. First, we use it to get a converging hierarchy of upper bounds on the regularized sandwiched alpha-Renyi divergence between quantum channels for alpha > 1. Second it allows us to prove a chain rule property for the sandwiched alpha-Renyi divergence for alpha > 1 which we use to characterize the strong converse exponent for channel discrimination. Finally it allows us to get improved bounds on quantum channel capacities.
引用
收藏
页数:26
相关论文
共 44 条
  • [21] Jencová A, 2018, ANN HENRI POINCARE, V19, P2513, DOI 10.1007/s00023-018-0683-5
  • [22] Katariya Vishal, 2020, ARXIV200410708
  • [23] Amortized entanglement of a quantum channel and approximately teleportation-simulable channels
    Kaur, Eneet
    Wilde, Mark M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
  • [24] MEANS OF POSITIVE LINEAR-OPERATORS
    KUBO, F
    ANDO, T
    [J]. MATHEMATISCHE ANNALEN, 1980, 246 (03) : 205 - 224
  • [25] Approaches for approximate additivity of the Holevo information of quantum channels
    Leditzky, Felix
    Kaur, Eneet
    Datta, Nilanjana
    Wilde, Mark M.
    [J]. PHYSICAL REVIEW A, 2018, 97 (01)
  • [26] Matsumoto K, 2013, ARXIV13114722
  • [27] Strong Converse Exponent for Classical-Quantum Channel Coding
    Mosonyi, Milan
    Ogawa, Tomohiro
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 373 - 426
  • [28] Mosonyi Milan, COMM MATH PHYS, V334, P1617
  • [29] On quantum Renyi entropies: A new generalization and some properties
    Mueller-Lennert, Martin
    Dupuis, Frederic
    Szehr, Oleg
    Fehr, Serge
    Tomamichel, Marco
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [30] Fundamental limits of repeaterless quantum communications
    Pirandola, Stefano
    Laurenza, Riccardo
    Ottaviani, Carlo
    Banchi, Leonardo
    [J]. NATURE COMMUNICATIONS, 2017, 8