Linear semi-infinite programming theory:: An updated survey

被引:63
作者
Goberna, MA [1 ]
López, MA [1 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, Alicante 03071, Spain
关键词
linear and convex semi-infinite programming linear and convex inequality systems; convex sets; stability; well-posedness; parametric optimization; constraint qualifications; global error bound;
D O I
10.1016/S0377-2217(02)00327-2
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an state-of-the-art survey on linear semi-infinite programming theory and its extensions (in particular. convex semi-infinite programming). This review updates a previous survey [Semi-Infinite Programming, Non-convex Optim. Appl. 25. 1998] of the same authors on the same topic which was published in 1998. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:390 / 405
页数:16
相关论文
共 97 条
[1]  
ABBE L, SEMIINFINITE PROGRAM, P169
[2]  
Altinel IK, 1997, NAV RES LOG, V44, P187, DOI 10.1002/(SICI)1520-6750(199703)44:2<187::AID-NAV3>3.0.CO
[3]  
2-5
[4]   Strong duality for inexact linear programming problems [J].
Amaya, J ;
Gómez, JA .
OPTIMIZATION, 2001, 49 (03) :243-269
[5]   AN EXTENSION OF THE SIMPLEX ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING [J].
ANDERSON, EJ ;
LEWIS, AS .
MATHEMATICAL PROGRAMMING, 1989, 44 (03) :247-269
[6]  
Anderson EJ, 1998, LINEAR ALGEBRA APPL, V270, P231
[7]   Simplex-like trajectories on quasi-polyhedral sets [J].
Anderson, EJ ;
Goberna, MA ;
López, MA .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (01) :147-162
[8]  
Anderson EJ, 1987, LINEAR PROGRAMMING I
[9]  
[Anonymous], 1991, CONVEX ANAL MINIMIZA
[10]  
ASTAFEV NN, 1994, SIB C APPL IND MATH, V1