Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering

被引:47
作者
Manzari-Tavakoli, Asma [1 ]
Tarasi, Roghayeh [2 ]
Sedghi, Roya [3 ]
Moghimi, Ali [1 ]
Niknejad, Hassan [2 ]
机构
[1] Ferdowsi Univ Mashhad, Rayan Ctr Neurosci & Behav, Fac Sci, Dept Biol, Mashhad, Razavi Khorasan, Iran
[2] Shahid Beheshti Univ Med Sci, Sch Med, Dept Pharmacol, Tehran, Iran
[3] Shahid Beheshti Univ, Fac Chem & Petr Sci, Dept Polymer & Mat Chem, GC, Tehran 1983969411, Iran
关键词
CHITOSAN NANOPARTICLES; COMPOSITE SCAFFOLD; CELL-CULTURE; ALGINATE; BIOMATERIALS; ENHANCEMENT; HYDROGELS; CELLULOSE; DESIGN; ACID;
D O I
10.1038/s41598-020-78650-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)-alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy-Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy-Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy-Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy-Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy-Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy-Alg scaffold can be a proper candidate for neural tissue engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] In Situ Fabrication of Nano-hydroxyapatite in a Macroporous Chitosan Scaffold for Tissue Engineering
    Chen, Jing Di
    Wang, Yingjun
    Chen, Xiaofeng
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2009, 20 (11) : 1555 - 1565
  • [32] A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering
    Yan, Huiqiong
    Huang, Denggao
    Chen, Xiuqiong
    Liu, Haifang
    Feng, Yuhong
    Zhao, Zhendong
    Dai, Zihao
    Zhang, Xueqin
    Lin, Qiang
    POLYMER BULLETIN, 2018, 75 (03) : 985 - 1000
  • [33] Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering
    Zhu, Qingmei
    Chen, Xiuqiong
    Liu, Zhaowen
    Li, Zhengyue
    Li, Dongze
    Yan, Huiqiong
    Lin, Qiang
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2023, 72 (04) : 296 - 307
  • [34] A review of biomaterials scaffold fabrication in additive manufacturing for tissue engineering
    Shick, Tang Mei
    Kadir, Aini Zuhra Abdul
    Ngadiman, Nor Hasrul Akhmal
    Ma'aram, Azanizawati
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2019, 34 (06) : 415 - 435
  • [36] Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications
    Sang, Lin
    Luo, Dongmei
    Xu, Songmei
    Wang, Xiaoliang
    Li, Xudong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (02): : 262 - 271
  • [37] Overview of Rapid Prototyping for Fabrication of Bone Tissue Engineering Scaffold
    Liu, Yunfeng
    Dong, Xingtao
    Zhu, Fudong
    DIGITAL DESIGN AND MANUFACTURING TECHNOLOGY, PTS 1 AND 2, 2010, 102-104 : 550 - +
  • [38] Fabrication, characterization, and optimization of a novel copper- incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications
    Bozorgi, Azam
    Mozafari, Masoud
    Khazaei, Mozafar
    Soleimani, Mansooreh
    Jamalpoor, Zahra
    BIOIMPACTS, 2022, 12 (03) : 233 - 246
  • [39] Fabrication of biodegradable poly(trimethylene carbonate) networks for potential tissue engineering scaffold applications
    Zhang, C.
    Subramanian, H.
    Grailer, J. J.
    Tiwari, A.
    Pilla, S.
    Steeber, D. A.
    Gong, S.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2009, 20 (09) : 742 - 747
  • [40] Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering
    Solovieva, Elena V.
    Fedotov, Alexander Yu
    Mamonov, Vasily E.
    Komlev, Vladimir S.
    Panteleyev, Andrey A.
    BIOMEDICAL MATERIALS, 2018, 13 (02)