Fabrication of nanochitosan incorporated polypyrrole/alginate conducting scaffold for neural tissue engineering

被引:47
作者
Manzari-Tavakoli, Asma [1 ]
Tarasi, Roghayeh [2 ]
Sedghi, Roya [3 ]
Moghimi, Ali [1 ]
Niknejad, Hassan [2 ]
机构
[1] Ferdowsi Univ Mashhad, Rayan Ctr Neurosci & Behav, Fac Sci, Dept Biol, Mashhad, Razavi Khorasan, Iran
[2] Shahid Beheshti Univ Med Sci, Sch Med, Dept Pharmacol, Tehran, Iran
[3] Shahid Beheshti Univ, Fac Chem & Petr Sci, Dept Polymer & Mat Chem, GC, Tehran 1983969411, Iran
关键词
CHITOSAN NANOPARTICLES; COMPOSITE SCAFFOLD; CELL-CULTURE; ALGINATE; BIOMATERIALS; ENHANCEMENT; HYDROGELS; CELLULOSE; DESIGN; ACID;
D O I
10.1038/s41598-020-78650-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The utilization of conductive polymers for fabrication of neural scaffolds have attracted much interest because of providing a microenvironment which can imitate nerve tissues. In this study, polypyrrole (PPy)-alginate (Alg) composites were prepared using different percentages of alginate and pyrrole by oxidative polymerization method using FeCl3 as an oxidant and electrical conductivity of composites were measured by four probe method. In addition, chitosan-based nanoparticles were synthesized by ionic gelation method and after characterization merged into PPy-Alg composite in order to fabricate a conductive, hydrophilic, processable and stable scaffold. Physiochemical characterization of nanochitosan/PPy-Alg scaffold such as electrical conductivity, porosity, swelling and degradation was investigated. Moreover, cytotoxicity and proliferation were examined by culturing OLN-93 neural and human dermal fibroblasts cells on the Nanochitosan/PPy-Alg scaffold. Due to the high conductivity, the film with ratio 2:10 (PPy-Alg) was recognized more suitable for fabrication of the final scaffold. Results from FT-IR and SEM, evaluation of porosity, swelling and degradation, as well as viability and proliferation of OLN-93 neural and fibroblast cells confirmed cytocompatiblity of the Nanochitosan/PPy-Alg scaffold. Based on the features of the constructed scaffold, Nanochitosan/PPy-Alg scaffold can be a proper candidate for neural tissue engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electroconductive Gelatin/Alginate/ Graphene Hydrogel Based Scaffold for Neural Tissue Repair
    Madaninasab, Pegah
    Mohammadi, Mahshid
    Labbaf, Sheyda
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2025, 310 (01)
  • [22] Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization
    Ketabat, Farinaz
    Alcorn, Jane
    Kelly, Michael E.
    Badea, Ildiko
    Chen, Xiongbiao
    SMALL SCIENCE, 2024, 4 (09):
  • [23] Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
    Hamzah, Mohd Syahir Anwar
    Abd Razak, Saiful Izwan
    Kadir, Mohammed Rafiq Abdul
    Bohari, Siti Pauliena Mohd
    Nayan, Nadirul Hasraf Mat
    Anand, Joseph Sahaya Thangaraj
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (05) : 421 - 431
  • [24] Fabrication and Characteristics of Chitosan Sponge as a Tissue Engineering Scaffold
    Ikeda, Takeshi
    Ikeda, Kahori
    Yamamoto, Kouhei
    Ishizaki, Hidetaka
    Yoshizawa, Yuu
    Yanagiguchi, Kajiro
    Yamada, Shizuka
    Hayashi, Yoshihiko
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [25] A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering
    Mawad, Damia
    Stewart, Elise
    Officer, David L.
    Romeo, Tony
    Wagner, Pawel
    Wagner, Klaudia
    Wallace, Gordon G.
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (13) : 2692 - 2699
  • [26] Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication
    Tian, X. Y.
    Li, M. G.
    Cao, N.
    Li, J. W.
    Chen, X. B.
    BIOFABRICATION, 2009, 1 (04)
  • [27] Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering
    Distler, Thomas
    Polley, Christian
    Shi, Fukun
    Schneidereit, Dominik
    Ashton, Mark. D.
    Friedrich, Oliver
    Kolb, Jurgen F.
    Hardy, John G.
    Detsch, Rainer
    Seitz, Hermann
    Boccaccini, Aldo R.
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (09)
  • [28] Electro-conductive silica nanoparticles-incorporated hydrogel based on alginate as a biomimetic scaffold for bone tissue engineering application
    Derakhshankhah, Hossein
    Eskandani, Morteza
    Nakhjavani, Sattar Akbari
    Tasoglu, Savas
    Vandghanooni, Somayeh
    Jaymand, Mehdi
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2024, 73 (04) : 266 - 278
  • [29] Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications
    Archana, D.
    Upadhyay, Laxmi
    Tewari, R. P.
    Dutta, Joydeep
    Huang, Y. B.
    Dutta, P. K.
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2013, 12 (04): : 475 - 482
  • [30] Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering
    Sharma, Chhavi
    Dinda, Amit Kumar
    Potdar, Pravin D.
    Chou, Chia-Fu
    Mishra, Narayan Chandra
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 64 : 416 - 427