Homogenization of a neutronic critical diffusion problem with drift

被引:23
作者
Capdeboscq, Y [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.1017/S0308210500001785
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the homogenization of an eigenvalue problem for a cooperative system of weakly coupled elliptic partial differential equations, called the neutronic multigroup diffusion model, in a periodic heterogeneous domain. Such a model is used for studying the criticality of nuclear reactor cores. In a recent work in collaboration with Gregoire Allaire, it is proved that, tinder a symmetry assumption, the first eigenvector of the multigroup system in the periodicity cell controls the oscillatory behaviour of the solutions, whereas the global trend is asymptotically given by a homogenized diffusion eigenvalue problem. It is shown here that when this symmetry condition is not fulfilled, the asymptotic behaviour of the neutron flux, corresponding to the first eigenvector of the multigroup system, is dramatically different. This result enables to consider new types of geometrical configurations in practical nuclear reactor core computations.
引用
收藏
页码:567 / 594
页数:28
相关论文
共 26 条
[1]   Spectral asymptotic analysis of a neutronic diffusion problem [J].
Allaire, G ;
Malige, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :939-944
[2]   Homogenization of a spectral problem in neutronic multigroup diffusion [J].
Allaire, G ;
Capdeboscq, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 187 (1-2) :91-117
[3]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[4]  
[Anonymous], 1983, COMPUTER SCI APPL MA
[5]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[6]   Homogenization of a spectral equation with drift in linear transport [J].
Bal, G .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (26) :613-627
[7]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[8]   Homogenization of a diffusion equation with drift [J].
Capdeboscq, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09) :807-812
[9]  
DENIZ V., 1986, CRC HDB NUCLEAR REAC, VII, P409
[10]  
Gilbarg D., 1983, COMPREHENSIVE STUDIE