Skyrmion-Induced Memristive Magnetic Tunnel Junction for Ternary Neural Network

被引:11
作者
Pan, Biao [1 ,2 ]
Zhang, Deming [1 ,3 ]
Zhang, Xueying [1 ,4 ,5 ]
Wang, Haotian [1 ,5 ]
Bai, Jinyu [1 ,5 ]
Yang, Jianlei [1 ,6 ]
Zhang, Youguang [1 ,2 ]
Kang, Wang [1 ,5 ]
Zhao, Weisheng [1 ,5 ]
机构
[1] Beihang Univ, Fert Beijing Inst, BDBC, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[3] Beihang Univ, Hefei Innovat Res Inst, Hefei 230013, Anhui, Peoples R China
[4] Beihang Univ, Beihang Goertek Joint Microelect Res Inst, Qingdao 266100, Shandong, Peoples R China
[5] Beihang Univ, Sch Microelect, Beijing 100191, Peoples R China
[6] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
来源
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY | 2019年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
Skyrmion; synapse; magnetic tunnel junction; ternary neural network;
D O I
10.1109/JEDS.2019.2913637
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Novel skyrmion-magnetic tunnel junction (SK-MTJ) devices were investigated for the first time to implement the ternary neural networks (TNN). In the SK-MTJ, an extra magnetoresistance state beyond binary parallel and anti-parallel MTJ states was achieved by forming a skyrmion vortex structure in the free layer. Based on the SK-MTJ, we propose a synaptic architecture with bit-cell design of +1, 0, and -1 to replace the full precision floating point arithmetic with equivalent bit-wise multiplication operation. To explore the feasibility of the SK-MTJ-based synaptic devices for TNN application, circuit-level simulations for image recognition task were conducted. The recognition rate can reach up to 99% with 5% device variation and an average power consumption of 29.23 mu W.
引用
收藏
页码:529 / 533
页数:5
相关论文
共 25 条
  • [1] Alemdar H, 2017, IEEE IJCNN, P2547, DOI 10.1109/IJCNN.2017.7966166
  • [2] Probing Decoherence in Plasmonic Waveguides in the Quantum Regime
    Dlamini, S. G.
    Francis, J. T.
    Zhang, X.
    Ozdemir, S. K.
    Chormaic, S. Nic
    Petruccione, F.
    Tame, M. S.
    [J]. PHYSICAL REVIEW APPLIED, 2018, 9 (02):
  • [3] Eken E, 2018, ASIA S PACIF DES AUT, P375, DOI 10.1109/ASPDAC.2018.8297352
  • [4] Spin-Transfer Torque Devices for Logic and Memory: Prospects and Perspectives
    Fong, Xuanyao
    Kim, Yusung
    Yogendra, Karthik
    Fan, Deliang
    Sengupta, Abhronil
    Raghunathan, Anand
    Roy, Kaushik
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2016, 35 (01) : 1 - 22
  • [5] Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array
    Gao, Ligang
    Chen, Pai-Yu
    Yu, Shimeng
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (07) : 870 - 873
  • [6] Spintronic Nanodevices for Bioinspired Computing
    Grollier, Julie
    Querlioz, Damien
    Stiles, Mark D.
    [J]. PROCEEDINGS OF THE IEEE, 2016, 104 (10) : 2024 - 2039
  • [7] Han S., 2016, P ICLR
  • [8] Magnetic skyrmion-based synaptic devices
    Huang, Yangqi
    Kang, Wang
    Zhang, Xichao
    Zhou, Yan
    Zhao, Weisheng
    [J]. NANOTECHNOLOGY, 2017, 28 (08)
  • [9] Hwang K, 2014, IEEE WRK SIG PRO SYS, P174
  • [10] Skyrmion-Electronics: An Overview and Outlook
    Kang, Wang
    Huang, Yangqi
    Zhang, Xichao
    Zhou, Yan
    Zhao, Weisheng
    [J]. PROCEEDINGS OF THE IEEE, 2016, 104 (10) : 2040 - 2061