Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis

被引:67
|
作者
Li, Wenli [1 ]
Turner, Amy [1 ]
Aggarwal, Praful [1 ]
Matter, Andrea [1 ]
Storvick, Erin [1 ]
Arnett, Donna K. [2 ]
Broeckel, Ulrich [1 ]
机构
[1] Med Coll Wisconsin, Sect Genom Pediat, Dept Pediat, Milwaukee, WI 53226 USA
[2] Univ Alabama Birmingham, Dept Epidemiol, Birmingham, AL 35294 USA
来源
BMC GENOMICS | 2015年 / 16卷
关键词
Targeted gene quantification; Differential gene expression; hiPSC-CMs; READ ALIGNMENT; SEQ DATA; MICROARRAY; IDENTIFICATION; PROGRESS;
D O I
10.1186/s12864-015-2270-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq (TM) Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Results: Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Conclusions: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis
    Wenli Li
    Amy Turner
    Praful Aggarwal
    Andrea Matter
    Erin Storvick
    Donna K. Arnett
    Ulrich Broeckel
    BMC Genomics, 16
  • [2] Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing
    Wibowo Arindrarto
    Daniel M. Borràs
    Ruben A. L. de Groen
    Redmar R. van den Berg
    Irene J. Locher
    Saskia A. M. E. van Diessen
    Rosalie van der Holst
    Edith D. van der Meijden
    M. Willy Honders
    Rick H. de Leeuw
    Wina Verlaat
    Inge Jedema
    Wilma G. M. Kroes
    Jeroen Knijnenburg
    Tom van Wezel
    Joost S. P. Vermaat
    Peter J. M. Valk
    Bart Janssen
    Peter de Knijff
    Cornelis A. M. van Bergen
    Erik B. van den Akker
    Peter A. C. ’t Hoen
    Szymon M. Kiełbasa
    Jeroen F. J. Laros
    Marieke Griffioen
    Hendrik Veelken
    Leukemia, 2021, 35 : 47 - 61
  • [3] Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing
    Arindrarto, Wibowo
    Borras, Daniel M.
    de Groen, Ruben A. L.
    van den Berg, Redmar R.
    Locher, Irene J.
    van Diessen, Saskia A. M. E.
    van der Holst, Rosalie
    van der Meijden, Edith D.
    Honders, M. Willy
    de Leeuw, Rick H.
    Verlaat, Wina
    Jedema, Inge
    Kroes, Wilma G. M.
    Knijnenburg, Jeroen
    van Wezel, Tom
    Vermaat, Joost S. P.
    Valk, Peter J. M.
    Janssen, Bart
    de Knijff, Peter
    van Bergen, Cornelis A. M.
    van den Akker, Erik B.
    't Hoen, Peter A. C.
    Kielbasa, Szymon M.
    Laros, Jeroen F. J.
    Griffioen, Marieke
    Veelken, Hendrik
    LEUKEMIA, 2021, 35 (01) : 47 - 61
  • [4] Targeted whole transcriptome gene expression profiling for mechanistic toxicology
    VanSteenhouse, Harper
    Shepard, Peter
    Yeakley, Joanne
    Seligmann, Bruce
    TOXICOLOGY LETTERS, 2017, 280 : S295 - S295
  • [5] Novel Gene Expression Profile of Women with Intrinsic Skin Youthfulness by Whole Transcriptome Sequencing
    Xu, Jin
    Spitale, Robert C.
    Guan, Linna
    Flynn, Ryan A.
    Torre, Eduardo A.
    Li, Rui
    Reber, Inbar
    Qu, Kun
    Kern, Dale
    Knaggs, Helen E.
    Chang, Howard Y.
    Chang, Anne Lynn S.
    PLOS ONE, 2016, 11 (11):
  • [6] Whole Transcriptome RNA Sequencing As a Comprehensive Diagnostic Tool for Acute Myeloid Leukemia
    Griffioen, Marieke
    Arindrarto, Wibowo
    Borras, Daniel M.
    Locher, Irene J.
    van Diessen, Saskia A. M. E.
    van der Holst, Rosalie
    van der Meijden, Edith D.
    Honders, M. Willy
    de Leeuw, Rick H.
    Jedema, Inge
    Kroes, Wilma G. M.
    Knijnenburg, Jeroen
    Vermaat, Joost
    Valk, Peter
    Janssen, Bart
    de Knijff, Peter
    van Bergen, Cornelis A. M.
    van den Akker, Erik B.
    't Hoen, Peter A. C.
    Kielbasa, Szymon M.
    Laros, Jeroen F. J.
    Veelken, Hendrik
    BLOOD, 2018, 132
  • [7] Comprehensive Analysis of MYC Translocations in Multiple Myeloma By Whole Genome Sequencing and Whole Transcriptome Sequencing
    Seliger, Sonja
    Geirhos, Verena
    Haferlach, Torsten
    Kern, Wolfgang
    Walter, Wencke
    Meggendorfer, Manja
    Baer, Constance
    Stengel, Anna
    Haferlach, Claudia
    BLOOD, 2019, 134
  • [8] Single cell whole transcriptome analysis of disease cells to generate a targeted RNA-sequencing gene panel for the simultaneous analysis of targeted mRNA and protein
    Bansal, Nidhanjali
    Song, Hye-Won
    Sa, Silin
    Lomas, Woodrow E.
    Baracho, Gisele V.
    Taylor, Ian
    Widmann, Stephanie
    Mortimer, Stefanie
    JOURNAL OF IMMUNOLOGY, 2019, 202 (01):
  • [9] Whole-Transcriptome RNA Sequencing Uncovers the Global Expression Changes and RNA Regulatory Networks in Duck Embryonic Myogenesis
    Liu, Shuibing
    Wu, Jintao
    Zhang, Wentao
    Jiang, Hongxia
    Zhou, Yanan
    Liu, Jing
    Mao, Huirong
    Liu, Sanfeng
    Chen, Biao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [10] Modular RNA expression analysis using whole transcriptome and targeted analysis in single cells on BD Rhapsody
    Nakamoto, Margaret
    Lam, Gretchen
    Chang, Christina
    Shum, Eleen
    CANCER RESEARCH, 2019, 79 (13)