Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis

被引:69
作者
Li, Wenli [1 ]
Turner, Amy [1 ]
Aggarwal, Praful [1 ]
Matter, Andrea [1 ]
Storvick, Erin [1 ]
Arnett, Donna K. [2 ]
Broeckel, Ulrich [1 ]
机构
[1] Med Coll Wisconsin, Sect Genom Pediat, Dept Pediat, Milwaukee, WI 53226 USA
[2] Univ Alabama Birmingham, Dept Epidemiol, Birmingham, AL 35294 USA
关键词
Targeted gene quantification; Differential gene expression; hiPSC-CMs; READ ALIGNMENT; SEQ DATA; MICROARRAY; IDENTIFICATION; PROGRESS;
D O I
10.1186/s12864-015-2270-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq (TM) Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Results: Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Conclusions: Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays [J].
Agarwal, Ashish ;
Koppstein, David ;
Rozowsky, Joel ;
Sboner, Andrea ;
Habegger, Lukas ;
Hillier, LaDeana W. ;
Sasidharan, Rajkumar ;
Reinke, Valerie ;
Waterston, Robert H. ;
Gerstein, Mark .
BMC GENOMICS, 2010, 11
[2]   RNA Expression Profiling of Human iPSC-Derived Cardiomyocytes in a Cardiac Hypertrophy Model [J].
Aggarwal, Praful ;
Turner, Amy ;
Matter, Andrea ;
Kattman, Steven J. ;
Stoddard, Alexander ;
Lorier, Rachel ;
Swanson, Bradley J. ;
Arnett, Donna K. ;
Broeckel, Ulrich .
PLOS ONE, 2014, 9 (09)
[3]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[4]   Linkage of left ventricular contractility to chromosome 11 in humans - The HyperGEN study [J].
Arnett, DK ;
Devereux, RB ;
Kitzman, D ;
Oberman, A ;
Hopkins, P ;
Atwood, L ;
Dewan, A ;
Rao, DC .
HYPERTENSION, 2001, 38 (04) :767-772
[5]   The external RNA controls consortium: a progress report [J].
Baker, SC ;
Bauer, SR ;
Beyer, RP ;
Brenton, JD ;
Bromley, B ;
Burrill, J ;
Causton, H ;
Conley, MP ;
Elespuru, R ;
Fero, M ;
Foy, C ;
Fuscoe, J ;
Gao, XL ;
Gerhold, DL ;
Gilles, P ;
Goodsaid, F ;
Guo, X ;
Hackett, J ;
Hockett, RD ;
Ikonomi, P ;
Irizarry, RA ;
Kawasaki, ES ;
Kaysser-Kranich, T ;
Kerr, K ;
Kiser, G ;
Koch, WH ;
Lee, KY ;
Liu, CM ;
Liu, ZL ;
Lucas, A ;
Manohar, CF ;
Miyada, G ;
Modrusan, Z ;
Parkes, H ;
Puri, RK ;
Reid, L ;
Ryder, TB ;
Salit, M ;
Samaha, RR ;
Scherf, U ;
Sendera, TJ ;
Setterquist, RA ;
Shi, LM ;
Shippy, R ;
Soriano, JV ;
Wagar, EA ;
Warrington, JA ;
Williams, M ;
Wilmer, F ;
Wilson, M .
NATURE METHODS, 2005, 2 (10) :731-734
[6]   Global identification of human transcribed sequences with genome tiling arrays [J].
Bertone, P ;
Stolc, V ;
Royce, TE ;
Rozowsky, JS ;
Urban, AE ;
Zhu, XW ;
Rinn, JL ;
Tongprasit, W ;
Samanta, M ;
Weissman, S ;
Gerstein, M ;
Snyder, M .
SCIENCE, 2004, 306 (5705) :2242-2246
[7]   Targeted RNA-Sequencing with Competitive Multiplex-PCR Amplicon Libraries [J].
Blomquist, Thomas M. ;
Crawford, Erin L. ;
Lovett, Jennie L. ;
Yeo, Jiyoun ;
Stanoszek, Lauren M. ;
Levin, Albert ;
Li, Jia ;
Lu, Mei ;
Shi, Leming ;
Muldrew, Kenneth ;
Willey, James C. .
PLOS ONE, 2013, 8 (11)
[8]  
Boerwinkle E, 2002, HYPERTENSION, V39, P3
[9]   A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling [J].
Bradford, James R. ;
Hey, Yvonne ;
Yates, Tim ;
Li, Yaoyong ;
Pepper, Stuart D. ;
Miller, Crispin J. .
BMC GENOMICS, 2010, 11
[10]   Evaluation of DNA microarray results with quantitative gene expression platforms [J].
Canales, Roger D. ;
Luo, Yuling ;
Willey, James C. ;
Austermiller, Bradley ;
Barbacioru, Catalin C. ;
Boysen, Cecilie ;
Hunkapiller, Kathryn ;
Jensen, Roderick V. ;
Knight, Charles R. ;
Lee, Kathleen Y. ;
Ma, Yunqing ;
Maqsodi, Botoul ;
Papallo, Adam ;
Peters, Elizabeth Herness ;
Poulter, Karen ;
Ruppel, Patricia L. ;
Samaha, Raymond R. ;
Shi, Leming ;
Yang, Wen ;
Zhang, Lu ;
Goodsaid, Federico M. .
NATURE BIOTECHNOLOGY, 2006, 24 (09) :1115-1122