Lp-boundedness of the wave operator for the one dimensional Schrodinger operator

被引:53
作者
D'Ancona, Piero [1 ]
Fanelli, Luca [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1007/s00220-006-0098-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a one dimensional perturbed Schrodinger operator H = - d(2)/dx(2) + V(x), we consider the associated wave operators W+/-, defined as the strong L-2 limits lim(s-->+/-infinity) e(is)He(-isH0). We prove that W+/- are bounded operators on L-p for all 1 < p < infinity, provided ( 1 + | x|)V-2(x) is an element of L-1, or else ( 1 + | x|) V( x) is an element of L-1 and 0 is not a resonance. For p = infinity we obtain an estimate in terms of the Hilbert transform. Some applications to dispersive estimates for equations with variable rough coefficients are given.
引用
收藏
页码:415 / 438
页数:24
相关论文
共 23 条
[1]  
AGMON S., 1975, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V2, P151
[2]  
AGRANOVICH ZS, 1963, INVERSE SCATTERING T
[3]  
Artbazar G., 2000, J MATH SCI-U TOKYO, V7, P221
[4]   Weighted estimates for the Helmholtz equation and some applications [J].
Barcelo, JA ;
Ruiz, A ;
Vega, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 150 (02) :356-382
[5]   Smoothing and dispersive estimates for ID Schrodinger equations with BV coefficients and applications [J].
Burq, N ;
Planchon, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) :265-298
[6]   Scattering and wave operators for one-dimensional Schrodinger operators with slowly decaying nonsmooth potentials [J].
Christ, M ;
Kiselev, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) :1174-1234
[7]  
DANCONA P, IN PRESS COMM PURE A
[8]  
DANCONA P, IN PRESS J FUNCT ANA
[9]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[10]   Dispersive estimates for the three-dimensional Schrodinger equation with rough potentials [J].
Goldberg, M. .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (03) :731-750