Integrality of a ratio of Petersson norms and level-lowering congruences

被引:33
作者
Prasanna, Kartik [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA USA
关键词
D O I
10.4007/annals.2006.163.901
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove integrality of the ratio < f, f >/(g, g) (outside an explicit finite set of primes), where g is an arithmetically normalized holomorphic newform on a Shimura curve, f is a normalized Hecke eigenform on GL(2) with the same Hecke eigenvalues as g and <,> denotes the Petersson inner product. The primes dividing this ratio are shown to be closely related to certain level-lowering congruences satisfied by f and to the central values of a family of Rankin-Selberg L-functions. Finally we give two applications, the first to proving the integrality of a certain triple product L-value and the second to the computation of the Faltings height of Jacobians of Shimura curves.
引用
收藏
页码:901 / 967
页数:67
相关论文
共 44 条
[1]  
Abbes A, 1996, COMPOS MATH, V103, P269
[2]   Heegner points on Mumford-Tate curves [J].
Bertolini, M ;
Darmon, H .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :413-456
[3]   Nonvanishing modulo l of Fourier coefficients of half-integral weight modular forms [J].
Bruinier, JH .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (03) :595-611
[4]  
De Shalit E., 1987, Perspectives Math, V3
[5]   NONOPTIMAL LEVELS OF MOD L MODULAR-REPRESENTATIONS [J].
DIAMOND, F ;
TAYLOR, R .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :435-462
[6]  
DIAMOND F, 1991, ASTERISQUE, V196, P205
[7]  
FALTINGS G, 1984, INVENT MATH, V75, P381, DOI 10.1007/BF01388572
[8]  
FALTINGS G, 1983, INVENT MATH, V73, P340
[9]  
GELBART S, 1975, AUTOMORPHIC FORMS AD, V83
[10]   STRUCTURE OF CERTAIN GALOIS GROUPS [J].
GREENBERG, R .
INVENTIONES MATHEMATICAE, 1978, 47 (01) :85-99