Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath

被引:129
作者
Yu, T
机构
[1] Univ Rochester, Rochester Theory Ctr Opt Sci & Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Queen Mary Univ London, Dept Phys, London E1 4NS, England
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 06期
关键词
D O I
10.1103/PhysRevA.69.062107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interrelationship between the non-Markovian stochastic Schrodinger equations and the corresponding non-Markovian master equations is investigated in the finite-temperature regimes. We show that the general finite-temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite-temperature reservoir in the rotating-wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories, relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity, and unity.
引用
收藏
页码:062107 / 1
页数:9
相关论文
共 47 条
[11]   Non-Markovian quantum state diffusion [J].
Diosi, L ;
Gisin, N ;
Strunz, WT .
PHYSICAL REVIEW A, 1998, 58 (03) :1699-1712
[12]   The non-Markovian stochastic Schrodinger equation for open systems [J].
Diosi, L ;
Strunz, WT .
PHYSICS LETTERS A, 1997, 235 (06) :569-573
[13]   THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM [J].
FEYNMAN, RP ;
VERNON, FL .
ANNALS OF PHYSICS, 1963, 24 (01) :118-173
[14]   Exact solution of the Hu-Paz-Zhang master equation [J].
Ford, GW ;
O'Connell, RF .
PHYSICAL REVIEW D, 2001, 64 (10)
[15]   Interpretation of non-Markovian stochastic Schrodinger equations as a hidden-variable theory [J].
Gambetta, J ;
Wiseman, HM .
PHYSICAL REVIEW A, 2003, 68 (06) :9
[16]   Perturbative approach to non-Markovian stochastic Schrodinger equations [J].
Gambetta, J ;
Wiseman, HM .
PHYSICAL REVIEW A, 2002, 66 (05) :16
[17]   Non-Markovian stochastic Schrodinger equations: Generalization to real-valued noise using quantum-measurement theory [J].
Gambetta, J ;
Wiseman, HM .
PHYSICAL REVIEW A, 2002, 66 (01) :17
[18]  
Gardiner C. W., 2000, QUANTUM NOISE
[19]   WAVE-FUNCTION QUANTUM STOCHASTIC DIFFERENTIAL-EQUATIONS AND QUANTUM-JUMP SIMULATION METHODS [J].
GARDINER, CW ;
PARKINS, AS ;
ZOLLER, P .
PHYSICAL REVIEW A, 1992, 46 (07) :4363-4381
[20]   Nonperturbative decay of an atomic system in a cavity [J].
Garraway, BM .
PHYSICAL REVIEW A, 1997, 55 (03) :2290-2303