Effect of vinylene carbonate on electrochemical performance and surface chemistry of hard carbon electrodes in lithium ion cells operated at different temperatures

被引:27
作者
Zhang, Xiang [1 ]
Fan, Changling [1 ]
Xiao, Ping'an [1 ]
Han, Shaochang [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
vinylene carbonate; hard carbon; temperature performance; SEI layers; NUCLEAR-MAGNETIC-RESONANCE; LI-ION; GRAPHITIZABLE CARBON; DIMETHYL CARBONATE; THERMAL-STABILITY; ANODE MATERIALS; BATTERY ANODE; INSERTION; INTERFACE; VC;
D O I
10.1016/j.electacta.2016.10.149
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to wide uses of lithium ion batteries and emerging researches on sodium ion batteries, hard carbon (HC) as an anode material comes into sights of research fellows recently. HC anode delivers a considerable reversible capacity at room temperature and increasing capacities at elevated temperatures. However, the electrolyte and solid electrolyte interphase (SEI) formed on the electrode surface tend to become instable at elevated temperatures, though the appreciable reservoir ability of HC is alluring. Herein, we report that vinylene carbonate (VC) is a desirable electrolyte additive for HC electrodes especially at elevated temperatures. The influence of VC on electrochemical performance and surface chemistry of HC electrodes at both 25 degrees C and 50 degrees C is investigated in detail using Cyclic voltammograms (CVs), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). In the presence of VC additive, a stable SEI film is formed upon cycling, which contains increased amounts of Li2CO3 and decreased F species contents. It demonstrates that the SEI formed in the presence of VC helps suppress salt anion (PF6-) decomposition as well as SEI transformation occurred at 50 degrees C. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:221 / 231
页数:11
相关论文
共 58 条
[1]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[2]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[3]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[4]   Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS [J].
Baggetto, Loic ;
Dudney, Nancy J. ;
Veith, Gabriel M. .
ELECTROCHIMICA ACTA, 2013, 90 :135-147
[5]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[6]   In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering [J].
Bridges, Craig A. ;
Sun, Xiao-Guang ;
Zhao, Jinkui ;
Paranthaman, M. Parans ;
Dai, Sheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14) :7701-7711
[7]   Studies of the Effect of Varying Vinylene Carbonate (VC) Content in Lithium Ion Cells on Cycling Performance and Cell Impedance [J].
Burns, J. C. ;
Petibon, R. ;
Nelson, K. J. ;
Sinha, N. N. ;
Kassam, Adil ;
Way, B. M. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1668-A1674
[8]   The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells [J].
Burns, J. C. ;
Sinha, N. N. ;
Coyle, D. J. ;
Jain, Gaurav ;
VanElzen, Collette M. ;
Lamanna, W. M. ;
Xiao, A. ;
Scott, Erik ;
Gardner, J. P. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :A85-A90
[9]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[10]   The ''falling cards model'' for the structure of microporous carbons [J].
Dahn, JR ;
Xing, W ;
Gao, Y .
CARBON, 1997, 35 (06) :825-830