Online Learning of Linear Predictors for Real-Time Tracking

被引:0
|
作者
Holzer, Stefan [1 ]
Pollefeys, Marc [2 ]
Ilic, Slobodan [1 ]
Tan, David Joseph [1 ]
Navab, Nassir [1 ]
机构
[1] Tech Univ Munich, Dept Comp Sci, Boltzmannstr 3, D-85748 Garching, Germany
[2] Swiss Fed Inst Technol, Dept Comp Sci, CH-8092 Zurich, Switzerland
来源
关键词
template tracking; template learning; linear predictors;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although fast and reliable, real-time template tracking using linear predictors requires a long training time. The lack of the ability to learn new templates online prevents their use in applications that require fast learning. This especially holds for applications where the scene is not known a priori and multiple templates have to be added online. So far, linear predictors had to be either learned offline [1] or in an iterative manner by starting with a small sized template and growing it over time [2]. In this paper, we propose a fast and simple reformulation of the learning procedure that allows learning new linear predictors online.
引用
收藏
页码:470 / 483
页数:14
相关论文
共 50 条
  • [1] Adaptive Linear Predictors for Real-Time Tracking
    Holzer, Stefan
    Ilic, Slobodan
    Navab, Nassir
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1807 - 1814
  • [2] Multilayer Adaptive Linear Predictors for Real-Time Tracking
    Holzer, Stefan
    Ilic, Slobodan
    Navab, Nassir
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 105 - 117
  • [3] Real-Time Tracking with Online Constrained Compressive Learning
    Guo, Bo
    Liu, Juan
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (04): : 988 - 992
  • [4] Online learning of mixture experts for real-time tracking
    Gu, S.
    Ma, Z.
    Xie, M.
    Chen, Z.
    IET COMPUTER VISION, 2016, 10 (06) : 585 - 592
  • [5] HERO: Online Real-Time Vehicle Tracking
    Zhu, Hongzi
    Li, Minglu
    Zhu, Yanmin
    Ni, Lionel M.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2009, 20 (05) : 740 - 752
  • [6] Online Learning Algorithms for the Real-Time Set-Point Tracking Problem
    Alahyari, Arman
    Pozo, David
    Farrokhifar, Meisam
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [7] Real-time visual tracking via online weighted multiple instance learning
    Zhang, Kaihua
    Song, Huihui
    PATTERN RECOGNITION, 2013, 46 (01) : 397 - 411
  • [8] Real-time object tracking via online weighted multiple instance learning
    Zhu, M. (zhu_mingca@163.com), 1661, Chinese Academy of Sciences (22):
  • [9] Real-time Keypoint-Based Object Tracking via Online Learning
    Guo, Bo
    Liu, Juan
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 907 - 911
  • [10] Online parallel framework for real-time visual tracking
    Li, Xiaojing
    Huang, Lei
    Wei, Guanqun
    Wei, Zhiqiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102