Differentiation identities for hypergeometric functions

被引:0
作者
Motohashi, Hayato [1 ]
机构
[1] Kogakuin Univ, Div Liberal Arts, 2665-1 Nakano machi, Hachioji, Hachioji, Tokyo 1920015, Japan
基金
日本学术振兴会;
关键词
Gauss hypergeometric function; Kummer confluent hypergeometric function; Generalized hypergeometric function;
D O I
10.1016/j.exmath.2022.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well-known that differentiation of hypergeometric function multiplied by a certain power function yields another hypergeometric function with a different set of parameters. Such differentiation identities for hypergeometric functions have been used widely in various fields of applied mathematics and natural sciences. In this expository note, we provide a simple proof of the differentiation identities, which is based only on the definition of the coefficients for the power series expansion of the hypergeometric functions.(c) 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:894 / 909
页数:16
相关论文
共 11 条
[1]  
Bailey W.N., 1935, GEN HYPERGEOMETRIC S
[2]  
Bateman H., 1955, HIGHER TRANSCENDENTA, VI
[3]  
Luke Y.L., 1969, SPECIAL FUNCTIONS TH, VVolume 1
[4]  
Magnus W., 1966, Formulas and Theorems for the Special Functions of Mathematical Physics, Vthird
[5]   Euler-type transformations for the generalized hypergeometric function r+2 F r+1(x) [J].
Miller, A. R. ;
Paris, R. B. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01) :31-45
[6]   Certain summation and transformation formulas for generalized hypergeometric series [J].
Miller, Allen R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (02) :964-972
[7]  
Motohashi H., DIFFERENTIATIO UNPUB
[8]  
Olver F.W.J., NIST DIGITAL LIB MAT, DOI DOI 10.1103/PhysRevLett.113.010501
[9]   HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS GRAPHS AND MATHEMATICAL TABLES [J].
OWEN, DB .
TECHNOMETRICS, 1965, 7 (01) :78-&
[10]  
Seaborn J.B., 1991, Hypergeometric Functions and Their Applications