A LARGE DEVIATION PRINCIPLE FOR WIGNER MATRICES WITHOUT GAUSSIAN TAILS

被引:25
作者
Bordenave, Charles [1 ,2 ]
Caputo, Pietro [3 ]
机构
[1] CNRS, Inst Math Toulouse, UMR 5219, F-31062 Toulouse, France
[2] Univ Toulouse 3, F-31062 Toulouse, France
[3] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
基金
欧洲研究理事会;
关键词
Random matrices; spectral measure; large deviations; free convolution; random networks; local weak convergence; SEMICIRCULAR DISTRIBUTION; FREE CONVOLUTION; RANDOM GRAPHS;
D O I
10.1214/13-AOP866
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider n x n Hermitian matrices with i.i.d. entries X-ij whose tail probabilities P(vertical bar X-ij vertical bar >= t) behave like e(-at alpha) for some a > 0 and alpha is an element of (0, 2). We establish a large deviation principle for the empirical spectral measure of X/root n with speed n(1+alpha/2) with a good rate function J(mu) that is finite only if mu is of the form mu = mu(sc) boxed plus nu for some probability measure nu on R, where boxed plus denotes the free convolution and mu(sc) is Wigner's semicircle law. We obtain explicit expressions for J(mu(sc) boxed plus nu) in terms of the alpha th moment of nu. The proof is based on the analysis of large deviations for the empirical distribution of very sparse random rooted networks.
引用
收藏
页码:2454 / 2496
页数:43
相关论文
共 21 条
[1]  
Aldous D, 2004, ENCYL MATH SCI, V110, P1
[2]   Processes on unimodular random networks [J].
Aldous, David ;
Lyons, Russell .
ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 :1454-1508
[3]  
ANDERSON G. W., 2009, Cambridge Stud. Adv. Math., V118, DOI DOI 10.1017/CBO9780511801334
[4]  
[Anonymous], 2002, Cambridge Studies in Advanced Mathematics, DOI DOI 10.1017/CBO9780511755347
[5]  
[Anonymous], SPECTRAL ANAL LARGE
[6]  
BenArous G, 1997, PROBAB THEORY REL, V108, P517
[7]  
Benjamini Itai, 2001, Electron. J. Probab., V6
[9]  
Biane P, 1997, INDIANA U MATH J, V46, P705
[10]   SPECTRUM OF LARGE RANDOM REVERSIBLE MARKOV CHAINS: HEAVY-TAILED WEIGHTS ON THE COMPLETE GRAPH [J].
Bordenave, Charles ;
Caputo, Pietro ;
Chafai, Djalil .
ANNALS OF PROBABILITY, 2011, 39 (04) :1544-1590