Simultaneous monitoring of cerebral metal accumulation in an experimental model of Wilson's disease by laser ablation inductively coupled plasma mass spectrometry

被引:28
作者
Boaru, Sorina Georgiana [1 ]
Merle, Uta [2 ]
Uerlings, Ricarda [1 ]
Zimmermann, Astrid [3 ]
Weiskirchen, Sabine [1 ]
Matusch, Andreas [4 ]
Stremmel, Wolfgang [2 ]
Weiskirchen, Ralf [1 ]
机构
[1] RWTH Aachen Univ Hosp Aachen, Inst Clin Chem & Pathobiochem, D-52074 Aachen, Germany
[2] Univ Clin Heidelberg, Dept Gastroenterol, Heidelberg, Germany
[3] Res Ctr Julich FZJ, Cent Inst Engn Elect & Analyt ZEA 3, Julich, Germany
[4] Res Ctr Julich FZJ, Inst Neurosci & Med INM 2, Julich, Germany
来源
BMC NEUROSCIENCE | 2014年 / 15卷
关键词
Wilson's disease; Bio-imaging; LA-ICP-MS; Copper; ATPase7B; COPPER TRANSPORTING ATPASE; NECROSIS-FACTOR-ALPHA; TOXIC MILK MOUSE; MENKES DISEASE; MURINE MODEL; ANIMAL-MODEL; BRAIN; GENE; MICE; METABOLISM;
D O I
10.1186/1471-2202-15-98
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Neuropsychiatric affection involving extrapyramidal symptoms is a frequent component of Wilson's disease (WD). WD is caused by a genetic defect of the copper (Cu) efflux pump ATPase7B. Mouse strains with natural or engineered transgenic defects of the Atp7b gene have served as model of WD. These show a gradual accumulation and concentration of Cu in liver, kidneys, and brain. However, still little is known about the regional distribution of Cu inside the brain, its influence on other metals and subsequent pathophysiological mechanisms. We have applied laser ablation inductively coupled plasma mass spectrometry and performed comparative metal bio-imaging in brain sections of wild type and Atp7b null mice in the age range of 11-24 months. Messenger RNA and protein expression of a panel of inflammatory markers were assessed using RT-PCR and Western blots of brain homogenates. Results: We could confirm Cu accumulation in brain parenchyma by a factor of two in WD (5.5 mu g g(-1) in the cortex) vs. controls (2.7 mu g g(-1)) that was already fully established at 11 months. In the periventricular regions (PVR) known as structures of prominent Cu content, Cu was reduced in turn by a factor of 3. This corroborates the view of the PVR as efflux compartments with active transport of Cu into the cerebrospinal fluid. Furthermore, the gradient of Cu increasing downstream the PVR was relieved. Otherwise the architecture of Cu distribution was essentially maintained. Zinc (Zn) was increased by up to 40% especially in regions of high Cu but not in typical Zn accumulator regions, a side effect due to the fact that Zn is to some degree a substrate of Cu-ATPases. The concentrations of iron (Fe) and manganese (Mn) were constant throughout all regions assessed. Inflammatory markers TNF-alpha, TIMP-1 and the capillary proliferation marker alpha-SMA were increased by a factor of 2-3 in WD. Conclusions: This study confirmed stable cerebral Cu accumulation in parenchyma and discovered reduced Cu in cerebrospinal fluid in Atp7b null mice underlining the diagnostic value of micro-local analytical techniques.
引用
收藏
页数:13
相关论文
共 49 条
[1]   Chronological changes in tissue copper, zinc and iron in the toxic milk mouse and effects of copper loading [J].
Allen, Katrina J. ;
Buck, Nicole E. ;
Cheah, Daphne M. Y. ;
Gazeas, Sophie ;
Bhathal, Prithi ;
Mercer, Julian F. B. .
BIOMETALS, 2006, 19 (05) :555-564
[2]   Mass spectrometry imaging (MSI) of metals in mouse spinal cord by laser ablation ICP-MS [J].
Becker, J. Sabine ;
Kumtabtim, Usarat ;
Wu, Bei ;
Steinacker, Petra ;
Otto, Markus ;
Matusch, Andreas .
METALLOMICS, 2012, 4 (03) :284-288
[3]   Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy [J].
Bednarek, Nathalie ;
Svedin, Pernilla ;
Garnotel, Roselyne ;
Favrais, Geraldine ;
Loron, Gauthier ;
Schwendiman, Leslie ;
Hagberg, Henrik ;
Morville, Patrice ;
Mallard, Carina ;
Gressens, Pierre .
PEDIATRIC RESEARCH, 2012, 71 (01) :63-70
[4]  
BIEMPICA L, 1988, LAB INVEST, V59, P500
[5]   Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis [J].
Borkham-Kamphorst, Erawan ;
de Leur, Eddy van ;
Zimmermann, Henning W. ;
Karlmark, Karlin Raja ;
Tihaa, Lidia ;
Haas, Ute ;
Tacke, Frank ;
Berger, Thorsten ;
Mak, Tak W. ;
Weiskirchen, Ralf .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2013, 1832 (05) :660-673
[6]  
Breedlove S Marc, 2013, BIOL PSYCHOL INTRO B
[7]   Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation [J].
Buiakova, OI ;
Xu, J ;
Lutsenko, S ;
Zeitlin, S ;
Das, K ;
Das, S ;
Ross, BM ;
Mekios, C ;
Scheinberg, IH ;
Gilliam, TC .
HUMAN MOLECULAR GENETICS, 1999, 8 (09) :1665-1671
[8]   Heterozygous tx mice have an increased sensitivity to copper loading:: Implications for Wilson's disease carriers [J].
Cheah, Daphne M. Y. ;
Deal, Yolanda J. ;
Wright, Paul F. A. ;
Buck, Nicole E. ;
Chow, Chung Wo ;
Mercer, Julian F. B. ;
Allen, Katrina J. .
BIOMETALS, 2007, 20 (05) :751-757
[9]   Wilson's disease: an update [J].
Das, Shyamal K. ;
Ray, Kunal .
NATURE CLINICAL PRACTICE NEUROLOGY, 2006, 2 (09) :482-493
[10]   Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes [J].
de Bie, P. ;
Muller, P. ;
Wijmenga, C. ;
Klomp, L. W. J. .
JOURNAL OF MEDICAL GENETICS, 2007, 44 (11) :673-688