Mining yeast gene microarray data with latent variable models

被引:0
作者
Staiano, Antonino [1 ]
Tagliaferri, Roberto [1 ]
De Vinco, Lara [1 ]
Ciaramella, Angelo [1 ]
Raiconi, Giancarlo [1 ]
Longo, Giuseppe [1 ]
Miele, Gennaro [1 ]
Amato, Roberto [1 ]
Del Mondo, Carmine [1 ]
Donalek, Ciro [1 ]
Mangano, Gianpiero [1 ]
Di Bernardo, Diego [1 ]
机构
[1] Univ Salerno, DMI, I-84084 Fisciano, Italy
来源
Biological and Artificial Intelligence Environments | 2005年
关键词
probabilistic principal surfaces; visualization; clustering; data mining; yeast genes;
D O I
10.1007/1-4020-3432-6_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene-expression microarrays make it possible to simultaneously measure the rate at which a cell or tissue is expressing each of its thousands of genes. One can use these comprehensive snapshots of biological activity to infer regulatory pathways in cells, identify novel targets for drug design, and improve diagnosis, prognosis, and treatment planning for those suffering from disease. However, the amount of data this new technology produces is more than one can manually analyze. Hence, the need for automated analysis of microarray data offers an opportunity for machine learning to have a significant impact on biology and medicine. Probabilistic Principal Surfaces defines a unified theoretical framework for nonlinear latent variable models embracing the Generative Topographic Mapping as a special case. This article describes the use of PPS for the analysis of yeast gene expression levels from microarray chips showing its effectiveness for high-D data visualization and clustering.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 10 条
[1]  
Bishop C. M., 1998, GTM GENERATIVE TOPOG
[2]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[3]  
CHANG K, 2001, IEEE T PATTERN ANAL, V23
[4]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[5]   Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization [J].
Spellman, PT ;
Sherlock, G ;
Zhang, MQ ;
Iyer, VR ;
Anders, K ;
Eisen, MB ;
Brown, PO ;
Botstein, D ;
Futcher, B .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (12) :3273-3297
[6]  
STAIANO A, 2003, THESIS U SALERNO ITA
[7]  
STAINO A, 2004, IN PRESS SERIES SOFT
[8]   Spectral analysis of stellar light curves by means of neural networks [J].
Tagliaferri, R ;
Ciaramella, A ;
Milano, L ;
Barone, F ;
Longo, G .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1999, 137 (02) :391-405
[9]   Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation [J].
Tamayo, P ;
Slonim, D ;
Mesirov, J ;
Zhu, Q ;
Kitareewan, S ;
Dmitrovsky, E ;
Lander, ES ;
Golub, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :2907-2912
[10]   Analysis of gene expression data using self-organizing maps [J].
Törönen, P ;
Kolehmainen, M ;
Wong, C ;
Castrén, E .
FEBS LETTERS, 1999, 451 (02) :142-146