Modified Viscosity Subgradient Extragradient-Like Algorithms for Solving Monotone Variational Inequalities Problems

被引:10
作者
Wairojjana, Nopparat [1 ]
Younis, Mudasir [2 ]
Rehman, Habib Ur [3 ]
Pakkaranang, Nuttapol [3 ]
Pholasa, Nattawut [4 ]
机构
[1] Valaya Alongkorn Rajabhat Univ Royal Patronage VR, Fac Sci & Technol, Appl Math Program, 1 Moo 20 Phaholyothin Rd, Klongluang 13180, Pathumthani, Thailand
[2] UIT Rajiv Gandhi Technol Univ, Univ Technol MP, Dept Appl Math, Bhopal 462033, India
[3] King Mongkuts Univ Technol Thonburi KMUTT, Dept Math, Fac Sci, Bangkok 10140, Thailand
[4] Univ Phayao, Sch Sci, Phayao 56000, Thailand
关键词
projection methods; strong convergence; extragradient method; monotone mapping; variational inequalities; STRONG-CONVERGENCE; PROJECTION;
D O I
10.3390/axioms9040118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational inequality theory is an effective tool for engineering, economics, transport and mathematical optimization. Some of the approaches used to resolve variational inequalities usually involve iterative techniques. In this article, we introduce a new modified viscosity-type extragradient method to solve monotone variational inequalities problems in real Hilbert space. The result of the strong convergence of the method is well established without the information of the operator's Lipschitz constant. There are proper mathematical studies relating our newly designed method to the currently state of the art on several practical test problems.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 43 条
  • [1] [Anonymous], 1991, Introductory functional analysis with applications
  • [2] [Anonymous], 2007, EQUILIBRIUM MODELS V
  • [3] Antipin A. S., 1976, Ekonom. i Mat. Metody, V12, P1164
  • [4] The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space
    Censor, Y.
    Gibali, A.
    Reich, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) : 318 - 335
  • [5] Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space
    Censor, Yair
    Gibali, Aviv
    Reich, Simeon
    [J]. OPTIMIZATION, 2012, 61 (09) : 1119 - 1132
  • [6] Modified hybrid projection methods for finding common solutions to variational inequality problems
    Dang Van Hieu
    Pham Ky Anh
    Le Dung Muu
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 66 (01) : 75 - 96
  • [7] Inertial projection and contraction algorithms for variational inequalities
    Dong, Q. L.
    Cho, Y. J.
    Zhong, L. L.
    Rassias, Th. M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 687 - 704
  • [8] The extragradient algorithm with inertial effects for solving the variational inequality
    Dong, Qiao-Li
    Lu, Yan-Yan
    Yang, Jinfeng
    [J]. OPTIMIZATION, 2016, 65 (12) : 2217 - 2226
  • [9] Modified subgradient extragradient method for variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (02) : 597 - 610
  • [10] Weak and strong convergence theorems for variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    [J]. NUMERICAL ALGORITHMS, 2018, 78 (04) : 1045 - 1060