Topological classification of excitations in quadratic bosonic systems

被引:11
作者
Zhou, Zixian [1 ,2 ]
Wan, Liang-Liang [1 ,2 ]
Xu, Zhi-Fang [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
topological classification; bosonic Bogoliubov excitation; K-theory; TIME-REVERSAL; PARITY; FERMIONS; STATES;
D O I
10.1088/1751-8121/abb92b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the topological classification of excitations in quadratic bosonic systems with an excitation band gap. Time-reversal, charge-conjugation, and parity symmetries in bosonic systems are introduced to realize a ten-fold symmetry classification. We find a specific decomposition of the quadratic bosonic Hamiltonian and use it to prove that each quadratic bosonic system is homotopic to a direct sum of two single-particle subsystems. The topological classification table is thus derived via inheriting from that of Atland-Zirnbauer classes and unique topological phases of bosons are predicted. Finally, concrete topological models are proposed to demonstrate the peculiarity of bosonic excitations.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Topological qubits in graphenelike systems
    Santos, Luiz
    Ryu, Shinsei
    Chamon, Claudio
    Mudry, Christopher
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [32] Nonlinear localized excitations in a topological ferromagnetic honeycomb lattice
    Feng, Wenhui
    Tang, Bing
    Wu, Lanjun
    Kong, Peng
    Yang, Chao
    Wang, Lei
    Deng, Ke
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 536
  • [33] Classification of "Quaternionic" Bloch-Bundles Topological Quantum Systems of Type AII
    De Nittis, Giuseppe
    Gomi, Kiyonori
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) : 1 - 55
  • [34] Topological classification and diagnosis in magnetically ordered electronic materials
    Peng, Bingrui
    Jiang, Yi
    Fang, Zhong
    Weng, Hongming
    Fang, Chen
    PHYSICAL REVIEW B, 2022, 105 (23)
  • [35] Optical-lattice implementation scheme of a bosonic topological model with fermionic atoms
    Nielsen, Anne E. B.
    Sierra, German
    Cirac, J. Ignacio
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [36] Energy preserving evolutions over Bosonic systems
    Gondolf, Paul
    Moebus, Tim
    Rouze, Cambyse
    QUANTUM, 2024, 8
  • [37] Quadratic solitons in higher-order topological insulators
    V. Kartashov, Yaroslav
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [38] Topological transitions of spin-excitations in insulating chiral antiferromagnets
    Owerre, S. A.
    EPL, 2020, 131 (02)
  • [39] Topological Classification of Fractal Squares
    ZHANG Yanfang
    ZHANG Suxiang
    WuhanUniversityJournalofNaturalSciences, 2020, 25 (02) : 105 - 108
  • [40] Topological excitations and bound photon pairs in a superconducting quantum metamaterial
    Besedin, Ilya S.
    Gorlach, Maxim A.
    Abramov, Nikolay N.
    Tsitsilin, Ivan
    Moskalenko, Ilya N.
    Dobronosova, Alina A.
    Moskalev, Dmitry O.
    Matanin, Alexey R.
    Smirnov, Nikita S.
    Rodionov, Ilya A.
    Poddubny, Alexander N.
    Ustinov, Alexey, V
    PHYSICAL REVIEW B, 2021, 103 (22)