Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration

被引:18
作者
Karakatsanis, Nicolas A. [1 ]
Nehmeh, Mohammad H. [2 ]
Conti, Maurizio [3 ]
Bal, Girish [3 ]
Gonzalez, Antonio J. [4 ]
Nehmeh, Sadek A. [1 ]
机构
[1] Cornell Univ, Dept Radiol, Weill Cornell Med Coll, New York, NY 10021 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[3] Siemens Med Solut, Knoxville, TN USA
[4] Univ Politecn Valencia, Inst Instrumentat Mol Imaging I3M, Valencia, Spain
关键词
PET; sparse; ring; checkerboard; long; axial; field-of-view; CONTINUOUS BED MOTION; BIOGRAPH VISION PET; TOTAL-BODY PET; PARAMETRIC PET; FIELD; ACQUISITION; DESIGN; HEART; OPPORTUNITIES; OPTIMIZATION;
D O I
10.1088/1361-6560/ac6aa1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Using Monte-Carlo simulations, we evaluated the physical performance of a hypothetical state-of-the-art clinical PET scanner with adaptive axial field-of-view (AFOV) based on the validated GATE model of the Siemens Biograph Vision (TM) PET/CT scanner. Approach. Vision consists of 16 compact PET rings, each consisting of 152 mini-blocks of 5 x 5 Lutetium Oxyorthosilicate crystals (3.2 x 3.2 x 20 mm(3)). The Vision 25.6 cm AFOV was extended by adopting (i) a sparse mini-block ring (SBR) configuration of 49.6 cm AFOV, with all mini-block rings interleaved with 16 mm axial gaps, or (ii) a sparse mini-block checkerboard (SCB) configuration of 51.2 cm AFOV, with all miniblocks interleaved with gaps of 16 mm (transaxial) x 16 mm (axial) width in checkerboard pattern. For sparse configurations, a 'limited' continuous bed motion (limited-CBM) acquisition was employed to extend AFOVs by 2.9 cm. Spatial resolution, sensitivity, image quality (IQ), NECR and scatter fraction were assessed per NEMA NU2-2012. Main Results. All IQ phantom spheres were distinguishable with all configurations. SBR and SCB percent contrast recovery (% CR) and background variability (% BV) were similar (p-value > 0.05). Compared to Vision, SBR and SCB % CRs were similar (p-values > 0.05). However, SBR and SCB %BVs were deteriorated by 30% and 26% respectively (p-values < 0.05). SBR, SCB and Vision exhibited system sensitivities of 16.6, 16.8, and 15.8 kcps MBq(-1), NECRs of 311 kcps @35 kBq cc(-1), 266 kcps @25.8 kBq cc(-1), and 260 kcps @27.8 kBq cc(-1), and scatter fractions of 31.2%, 32.4%, and 32.6%, respectively. SBR and SCB exhibited a smoother sensitivity reduction and noise enhancement rate from AFOV center to its edges. SBR and SCB attained comparable spatial resolution in all directions (p-value > 0.05), yet, up to 1.5 mm worse than Vision (p-values < 0.05). Significance. The proposed sparse configurations may offer a clinically adoptable solution for cost-effective adaptive AFOV PET with either highly-sensitive or long-AFOV acquisitions.
引用
收藏
页数:18
相关论文
共 78 条
[1]   Clinical perspectives for the use of total body PET/CT [J].
Abgral, Ronan ;
Bourhis, David ;
Salaun, Pierre-Yves .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (06) :1712-1718
[2]   Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT [J].
Alberts, Ian ;
Huenermund, Jan-Niklas ;
Prenosil, George ;
Mingels, Clemens ;
Bohn, Karl Peter ;
Viscione, Marco ;
Sari, Hasan ;
Vollnberg, Bernd ;
Shi, Kuangyu ;
Afshar-Oromieh, Ali ;
Rominger, Axel .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (08) :2395-2404
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]   Tracer Kinetic Modeling in PET [J].
Bentourkia, M'hamed ;
Zaidi, Habib .
PET CLINICS, 2007, 2 (02) :267-277
[5]   Development and Evaluation of mini-EXPLORER: A Long Axial Field-of-View PET Scanner for Nonhuman Primate Imaging [J].
Berg, Eric ;
Zhang, Xuezhu ;
Bec, Julien ;
Judenhofer, Martin S. ;
Patel, Brijesh ;
Peng, Qiyu ;
Kapusta, Maciej ;
Schmand, Matthias ;
Casey, Michael E. ;
Tarantal, Alice F. ;
Qi, Jinyi ;
Badawi, Ramsey D. ;
Cherry, Simon R. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (06) :993-998
[6]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86
[7]  
Carson RE, 2005, POSITRON EMISSION TO, P127, DOI [DOI 10.1007/1-84628-007-96, DOI 10.1007/1-84628-007-9_6]
[8]  
Casey M. E., 1995, Proceedings of the 1995 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, P67
[9]   QUANTITATION IN POSITRON EMISSION COMPUTED-TOMOGRAPHY .7. A TECHNIQUE TO REDUCE NOISE IN ACCIDENTAL COINCIDENCE MEASUREMENTS AND COINCIDENCE EFFICIENCY CALIBRATION [J].
CASEY, ME ;
HOFFMAN, EJ .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1986, 10 (05) :845-850
[10]   Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care [J].
Cherry, Simon R. ;
Jones, Terry ;
Karp, Joel S. ;
Qi, Jinyi ;
Moses, William W. ;
Badawi, Ramsey D. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (01) :3-12