A contactless sensing system for indoor fall recognition based on channel state information

被引:2
作者
Zhuang, Wei [1 ,2 ]
Shen, Yixian [1 ,2 ]
Zhang, Jiefeng [1 ,2 ]
Gao, Chunming [3 ]
Chen, Yi [4 ]
Dai, Dong [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Forens, Nanjing 210044, Peoples R China
[3] Univ Washington Tacoma, Sch Engn & Technol, Tacoma, WA 98402 USA
[4] Univ Edinburgh, Sch Informat, Edinburgh EH89AB, Midlothian, Scotland
[5] Southeast Univ, Sch Cyber Sci & Engn, 2 Sipailou, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
CSI; channel state information; movement recognition; fall detection; contactless sensing; sensorless sensing; WiFi radar; WiFi physical layer; SVM; support vector machine; THROUGHPUT; CSI;
D O I
10.1504/IJSNET.2020.111237
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the designs and the implementation of a non-invasive indoor fall recognition system based on channel state information (CSI) in the Wi-Fi physical layer. We use a wireless router and a laptop computer equipped with an Intel Wi-Fi Link 5300 network card (802.11n) to setup a hardware platform. The platform receives and stores CSI data under various circumstances when a person in the Wi-Fi covered area stands up, sits down, walks, and falls. The CSI data are then processed and analysed using Matlab tools. Feature variables such as signal offset strength, period of motion, normalised standard deviation, median absolute deviation, interquartile range, and signal entropy are examined and best feature variables are chosen. Finally, cross validation algorithm and support vector machine (SVM) are used to establish the pattern recognition model. We tested the system in a laboratory environment and the experimental results showed that the fall incidents were effectively differentiated from other movements.
引用
收藏
页码:188 / 200
页数:13
相关论文
共 25 条
  • [1] SemanticSLAM: Using Environment Landmarks for Unsupervised Indoor Localization
    Abdelnasser, Heba
    Mohamed, Reham
    Elgohary, Ahmed
    Alzantot, Moustafa Farid
    Wang, He
    Sen, Souvik
    Choudhury, Romit Roy
    Youssef, Moustafa
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2016, 15 (07) : 1770 - 1782
  • [2] See Through Walls with Wi-Fi!
    Adib, Fadel
    Katabi, Dina
    [J]. ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2013, 43 (04) : 75 - 86
  • [3] Analysis of Bus Ride Comfort Using Smartphone Sensor Data
    Chin, Hoong-Chor
    Pang, Xingting
    Wang, Zhaoxia
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 455 - 463
  • [4] SPEEDY: A fall detector in a wrist watch
    Degen, T
    Jaeckel, H
    Rufer, M
    Wyss, S
    [J]. SEVENTH IEEE INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, PROCEEDINGS, 2003, : 184 - 187
  • [5] Kiryati N, 2008, INT C PATT RECOG, P3015
  • [6] Defining Embedding Distortion for Intra Prediction Mode-Based Video Steganography
    Nie, Qiankai
    Xu, Xuba
    Feng, Bingwen
    Zhang, Leo Yu
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 55 (01): : 59 - 70
  • [7] Fall detection - Principles and methods
    Noury, N.
    Fleury, A.
    Rurneau, P.
    Bourke, A. K.
    Laighin, G.
    Rialle, V.
    Lundy, J. E.
    [J]. 2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 1663 - +
  • [8] Pu Q., 2013, P 19 ANN INT C MOB C, DOI [10.1145/2500423.2500436, DOI 10.1145/2500423.2500436]
  • [9] Ramezani Ramin, 2018, 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), P402, DOI 10.1109/BHI.2018.8333453
  • [10] Fall detection from human shape and motion history using video surveillance
    Rougier, Caroline
    Meunier, Jean
    St-Arnaud, Alain
    Rousseau, Jacqueline
    [J]. 21ST INTERNATIONAL CONFERENCE ON ADVANCED NETWORKING AND APPLICATIONS WORKSHOPS/SYMPOSIA, VOL 2, PROCEEDINGS, 2007, : 875 - +