GLOBAL UNIQUENESS FOR AN IBVP FOR THE TIME-HARMONIC MAXWELL EQUATIONS

被引:16
作者
Caro, Pedro [1 ]
Zhou, Ting [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00500 Helsinki, Finland
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
inverse boundary value problems in electromagnetism; uniqueness; BOUNDARY-VALUE PROBLEM; INVERSE CONDUCTIVITY PROBLEM; LESS REGULAR CONDUCTIVITIES; IMPEDANCE-IMAGING PROBLEM; MATERIAL PARAMETERS; LOCAL DATA; STABILITY; INFORMATION; PLANE;
D O I
10.2140/apde.2014.7.375
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity, and the conductivity, are described by continuously differentiable functions.
引用
收藏
页码:375 / 405
页数:31
相关论文
共 32 条
[1]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]   Calderon's inverse conductivity problem in the plane [J].
Astala, Kari ;
Paivarinta, Lassi .
ANNALS OF MATHEMATICS, 2006, 163 (01) :265-299
[4]   Global uniqueness in the impedance-imaging problem for less regular conductivities [J].
Brown, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1049-1056
[5]  
Calderón AP, 2006, COMPUT APPL MATH, V25, P133
[6]   Stability of the Calderon problem for less regular conductivities [J].
Caro, Pedro ;
Garcia, Andoni ;
Reyes, Juan Manuel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :469-492
[7]   ON AN INVERSE PROBLEM IN ELECTROMAGNETISM WITH LOCAL DATA: STABILITY AND UNIQUENESS [J].
Caro, Pedro .
INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) :297-322
[8]   Stable determination of the electromagnetic coefficients by boundary measurements [J].
Caro, Pedro .
INVERSE PROBLEMS, 2010, 26 (10)
[9]   Inverse Boundary Value Problem for Maxwell Equations with Local Data [J].
Caro, Pedro ;
Ola, Petri ;
Salo, Mikko .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (11) :1425-1464
[10]   STABILITY OF CALDERON'S INVERSE CONDUCTIVITY PROBLEM IN THE PLANE FOR DISCONTINUOUS CONDUCTIVITIES [J].
Clop, Albert ;
Faraco, Daniel ;
Ruiz, Alberto .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (01) :49-91