Machine Learning-Based Classification of Dislocation Microstructures

被引:30
作者
Steinberger, Dominik [1 ]
Song, Hengxu [1 ]
Sandfeld, Stefan [1 ]
机构
[1] Freiberg Univ Min & Technol, Inst Mech & Fluid Dynam, Micromech Mat Modelling Grp, Freiberg, Germany
基金
欧洲研究理事会;
关键词
machine learning; dislocation; classification; plasticity; microstructure; CONTINUUM THEORY; DYNAMICS; MECHANICS; SCALE;
D O I
10.3389/fmats.2019.00141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dislocations-the carrier of plastic deformation-are responsible for a wide range of mechanical properties of metals or semiconductors. Those line-like objects tend to form complex networks that are very difficult to characterize or to link to macroscopic properties on the specimen scale. In this work a machine learning based approach for classification of coarse-grained dislocation microstructures in terms of different dislocation density field variables is used. The performance of the model combined with domain knowledge from the underlying physics helps to shed light on the interplay between coarse-graining voxel size and the set of suitable or even required density variables for a faithful microstructure characterization.
引用
收藏
页数:10
相关论文
共 30 条
[1]  
Acharya A, 2006, J MECH PHYS SOLIDS, V54, P1687, DOI 10.1016/j.jmps.2006.01.009
[2]  
[Anonymous], 1958, Kontinuumstheorie der versetzungen und eigenspannungen
[3]   Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques [J].
Bostanabad, Ramin ;
Zhang, Yichi ;
Li, Xiaolin ;
Kearney, Tucker ;
Brinson, L. Catherine ;
Apley, Daniel W. ;
Liu, Wing Kam ;
Chen, Wei .
PROGRESS IN MATERIALS SCIENCE, 2018, 95 :1-41
[4]   Material structure-property linkages using three-dimensional convolutional neural networks [J].
Cecen, Ahmet ;
Dai, Hanjun ;
Yabansu, Yuksel C. ;
Kalidindi, Surya R. ;
Song, Le .
ACTA MATERIALIA, 2018, 146 :76-84
[5]   Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution [J].
Chen, Chien-Chun ;
Zhu, Chun ;
White, Edward R. ;
Chiu, Chin-Yi ;
Scott, M. C. ;
Regan, B. C. ;
Marks, Laurence D. ;
Huang, Yu ;
Miao, Jianwei .
NATURE, 2013, 496 (7443) :74-+
[6]   Image driven machine learning methods for microstructure recognition [J].
Chowdhury, Aritra ;
Kautz, Elizabeth ;
Yener, Bulent ;
Lewis, Daniel .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 123 :176-187
[7]   Informatics-aided bandgap engineering for solar materials [J].
Dey, Partha ;
Bible, Joe ;
Datta, Somnath ;
Broderick, Scott ;
Jasinski, Jacek ;
Sunkara, Mahendra ;
Menon, Madhu ;
Rajan, Krishna .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 83 :185-195
[8]   On the optimality of the simple Bayesian classifier under zero-one loss [J].
Domingos, P ;
Pazzani, M .
MACHINE LEARNING, 1997, 29 (2-3) :103-130
[9]   Big Data of Materials Science: Critical Role of the Descriptor [J].
Ghiringhelli, Luca M. ;
Vybiral, Jan ;
Levchenko, Sergey V. ;
Draxl, Claudia ;
Scheffler, Matthias .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[10]   Nanoscratching of iron: A novel approach to characterize dislocation microstructures [J].
Gunkelmann, Nina ;
Alhafez, Iyad Alabd ;
Steinberger, Dominik ;
Urbassek, Herbert M. ;
Sandfeld, Stefan .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 135 :181-188