A Physical Dissipative System with a Poincare Homoclinic Figure-Eight

被引:1
作者
Simo, C. [1 ]
Vieiro, A. [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
来源
PROGRESS AND CHALLENGES IN DYNAMICAL SYSTEMS | 2013年 / 54卷
关键词
D O I
10.1007/978-3-642-38830-9_24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider 2D diffeomorphisms with a homoclinic figure-eight to a dissipative saddle under a periodic forcing. These systems are natural simplified models of phenomena with forcing and dissipation. As a physical example we study the dynamics of a parametrically driven dissipative pendulum with a magnetic kick forcing acting on it.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 8 条
  • [1] Afraimovich VS., 1977, PRIKL MAT MEKH, V41, P618
  • [2] [Anonymous], 2004, ELEMENTS APPL BIFURC
  • [3] Towards global models near homoclinic tangencies of dissipative diffeomorphisms
    Broer, H
    Simo, C
    Tatjer, JC
    [J]. NONLINEARITY, 1998, 11 (03) : 667 - 770
  • [4] Chirikov B.V., 1979, PHYS REP, V52, P264
  • [5] Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight
    Gonchenko, S. V.
    Simo, C.
    Vieiro, A.
    [J]. NONLINEARITY, 2013, 26 (03) : 621 - 678
  • [6] Turaev D.V., 1984, METHODS QUALITATIVE, P162
  • [7] Turaev D.V., 1987, SOV MATH DOKL, V44, P422
  • [8] ZASLAVSKII GM, 1968, SOV PHYS JETP-USSR, V27, P851