Risk-Sensitive Mean-Field Games

被引:126
作者
Tembine, Hamidou [1 ]
Zhu, Quanyan [2 ,3 ]
Basar, Tamer [2 ,3 ]
机构
[1] King Abdullah Univ Sci & Technol, KAUST Strateg Res Initiat Ctr Uncertainty Quantif, Thuwal 239556900, Saudi Arabia
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
关键词
Decentralized control; H infinity control; SYSTEMS; PROPAGATION; BEHAVIOR; MODEL;
D O I
10.1109/TAC.2013.2289711
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton-Jacobi-Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics.
引用
收藏
页码:835 / 850
页数:16
相关论文
共 42 条
[1]   Oblivious Equilibrium for Large-Scale Stochastic Games with Unbounded Costs [J].
Adlakha, Sachin ;
Johari, Ramesh ;
Weintraub, Gabriel ;
Goldsmith, Andrea .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :5531-5538
[2]  
[Anonymous], 1985, Ecole d'Ete de Probabilites de Saint-Flour XIII
[3]  
[Anonymous], 1956, P 3 BERK S MATH STAT
[4]  
[Anonymous], COGN RAD OR WIR NETW
[5]  
[Anonymous], 2010, PARIS PRINCETON LECT
[6]  
Bardi M., 2011, WORKSH MEAN FIELD GA
[7]   Nash equilibria of risk-sensitive nonlinear stochastic differential games [J].
Basar, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 100 (03) :479-498
[8]  
Basar T., 1999, DYNAMIC NONCOOPERATI, V23
[9]   OPTIMAL-CONTROL OF PARTIALLY OBSERVABLE STOCHASTIC-SYSTEMS WITH AN EXPONENTIAL-OF-INTEGRAL PERFORMANCE INDEX [J].
BENSOUSSAN, A ;
VANSCHUPPEN, JH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (04) :599-613
[10]  
Bensoussan A., 2011, Linear quadratic mean field games