Explosive transitions to synchronization in weighted static scale-free networks

被引:4
|
作者
Zhu, Liuhua [1 ]
Tian, Liang [1 ]
Shi, Daning [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Jiangsu, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 11期
基金
中国博士后科学基金;
关键词
OSCILLATORS; KURAMOTO; POPULATIONS; PERCOLATION; STABILITY; CIRCUIT; CLUSTER; COST;
D O I
10.1140/epjb/e2013-40807-6
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The emergence of explosive synchronization transitions in networks of phase oscillators has become recently one of the most interesting topics. We simulate the Kuramoto model on top of a family of weighted static scale-free networks. It is found that when the strength of the network's edge is linearly correlated with frequency gap of pair of oscillators at its ends, i.e., the microscopic correlation exponent beta is equal to 1, the model with the degree distribution exponent gamma > 3 undergoes a first-order phase transition, while the transition becomes second order at 2 < gamma <= 3. We also find that in homogeneous networks (gamma -> infinity) the explosive synchronization is replaced by a continuous phase transition when the microscopic correlation exponent beta is changed from positive to negative. This is a new discovery of explosive synchronization transitions in weighted complex networks, which provides a fresh angle and tool to understand this explosive behavior.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Ordering chaos and synchronization transitions by chemical delay and coupling on scale-free neuronal networks
    Gong, Yubing
    Xie, Yanhang
    Lin, Xiu
    Hao, Yinghang
    Ma, Xiaoguang
    CHAOS SOLITONS & FRACTALS, 2010, 43 (1-12) : 96 - 103
  • [32] Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling
    Hao, Yinghang
    Gong, Yubing
    Wang, Li
    Ma, Xiaoguang
    Yang, Chuanlu
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 260 - 268
  • [33] Nonequilibrium phase transitions and finite-size scaling in weighted scale-free networks
    Karsai, M
    Juhász, R
    Iglói, F
    PHYSICAL REVIEW E, 2006, 73 (03)
  • [34] Synchronization transition in scale-free networks: Clusters of synchrony
    Lee, DS
    PHYSICAL REVIEW E, 2005, 72 (02)
  • [35] Synchronization in lattice-embedded scale-free networks
    Tauro, Carolina B.
    Tamarit, Francisco A.
    Gleiser, Pablo M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) : 834 - 842
  • [36] Bursting synchronization in neuronal assemblies of scale-free networks
    Reis, Adriane S.
    Iarosz, Kelly C.
    Ferrari, Fabiano A. S.
    Caldas, Ibere L.
    Batista, Antonio M.
    Viana, Ricardo L.
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [37] Phase synchronization on scale-free networks with community structure
    Zhou, Tao
    Zhao, Ming
    Chen, Guanrong
    Yan, Gang
    Wang, Bing-Hong
    PHYSICS LETTERS A, 2007, 368 (06) : 431 - 434
  • [38] Synchronization in scale-free dynamical networks: Robustness and fragility
    Wang, XF
    Chen, GR
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (01) : 54 - 62
  • [39] Paths to globally generalized synchronization in scale-free networks
    Hung, Yao-Chen
    Huang, Yu-Ting
    Ho, Ming-Chung
    Hu, Chin-Kun
    PHYSICAL REVIEW E, 2008, 77 (01):
  • [40] Onset of synchronization of Kuramoto oscillators in scale-free networks
    Peron, Thomas
    de Resende, Bruno Messias F.
    Mata, Angelica S.
    Rodrigues, Francisco A.
    Moreno, Yamir
    PHYSICAL REVIEW E, 2019, 100 (04)