Constant Sign and Sign-Changing Solutions for Quasilinear Elliptic Equations with Neumann Boundary Condition

被引:0
作者
Barletta, Giuseppina [1 ]
Candito, Pasquale [1 ]
Motreanu, Dumitru [2 ]
机构
[1] Univ Mediterranea Reggio Calabria, MECMAT, Dipartimento Meccan & Mat, I-89100 Reggio Di Calabria, Italy
[2] Univ Perpignan, Dept Math, F-66860 Perpignan, France
关键词
Quasilinear elliptic equations; sub-supersolution; critical point; Neumann problem; constant sign solutions; sign-changing solutions; P-LAPLACIAN; MULTIPLE SOLUTIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Through variational methods, sub-supersolution and truncation techniques we prove the existence of three nontrivial solutions for a quasilinear elliptic equation with Neumann boundary condition. We provide sign information for each of these solutions: two of them are of opposite constant sign and the third one is sign changing.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 19 条
[1]   THE SPECTRUM AND AN INDEX FORMULA FOR THE NEUMANN p-LAPLACIAN AND MULTIPLE SOLUTIONS FOR PROBLEMS WITH A CROSSING NONLINEARITY [J].
Aizicovici, S. ;
Papageorgiou, N. S. ;
Staicu, V. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :431-456
[2]   A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential [J].
Barletta, Giuseppina ;
Papageorgiou, Nikolaos S. .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (03) :365-392
[3]   Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian [J].
Bonanno, G ;
Candito, P .
ARCHIV DER MATHEMATIK, 2003, 80 (04) :424-429
[4]  
Carl S., 2002, Abstract and Applied Analysis, V7, P613, DOI 10.1155/S1085337502207010
[5]   Constant-sign and sign-changing solutions for nonlinear eigenvalue problems [J].
Carl, Siegfried ;
Motreanu, Dumitru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2668-2676
[6]  
Carl S, 2007, SPRINGER MONOGR MATH, P1
[7]   Multiple and sign-changing solutions for the multivalued p-Laplacian equation [J].
Carl, Siegfried ;
Motreanu, Dumitru .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (07) :965-981
[9]  
Gasinski L., 2006, NONLINEAR ANAL
[10]   Eigenvalue problems for the p-Laplacian [J].
Lê, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :1057-1099