C0-Limits of Hamiltonian Paths and the Oh-Schwarz Spectral Invariants

被引:24
作者
Seyfaddini, Sobhan [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
关键词
QUASI-STATES; DIFFEOMORPHISMS; UNIQUENESS; GEOMETRY; ENERGY;
D O I
10.1093/imrn/rns191
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the behavior of the Oh-Schwarz spectral invariants under C-0-small perturbations of the Hamiltonian flow. We show that if two Hamiltonians G, H vanish on a small ball and if their flows are sufficiently C-0-close, then vertical bar rho(G; a) - rho(H; a)vertical bar <= Cd-C0(path) (phi(t)(G), pi(t)(H)). Using the above result, we prove that if phi is a sufficiently C-0-small Hamiltonian diffeomorphism on a surface of genus g, then parallel to phi parallel to(gamma) <= C(d(C0)(Id, phi))(2-2g-1) hence establishing C-0-continuity of the spectral norm on surfaces. We also present applications of the above results to the theory of Calabi quasimorphisms and improve a result of Entov et al. [9]. In the final section of the paper, we use our results to answer a question of Y.-G. Oh about spectral Hamiltonian homeomorphisms.
引用
收藏
页码:4920 / 4960
页数:41
相关论文
共 34 条
[2]   Calabi quasimorphisms for the symplectic ball [J].
Biran, P ;
Entov, M ;
Polterovich, L .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (05) :793-802
[3]  
Buhovsky L, 2013, J SYMPLECT GEOM, V11, P37
[4]  
CALABI E., 1970, Problems in analysis, P1
[5]  
Entov M, 2006, COMMENT MATH HELV, V81, P75
[6]  
Entov M, 2003, INT MATH RES NOTICES, V2003, P1635
[7]  
Entov M., 2012, PROGR MATH, V296
[8]  
Entov M, 2008, CONTEMP MATH, V460, P47
[9]   Rigid subsets of symplectic manifolds [J].
Entov, Michael ;
Polterovich, Leonid .
COMPOSITIO MATHEMATICA, 2009, 145 (03) :773-826
[10]   ON THE TOPOLOGICAL PROPERTIES OF SYMPLECTIC MAPS [J].
HOFER, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :25-38