Convergence of generalized Bernstein polynomials

被引:133
作者
Il'inskii, A
Ostrovska, S
机构
[1] Kharkov Natl Univ, Dept Math & Mech, UA-61077 Kharkov, Ukraine
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
generalized Bernstein polynomials; q-integers; q-binomial coefficients; convergence;
D O I
10.1006/jath.2001.3657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f is an element of C[0, 1], q is an element of (0, 1), and B-n(f, q; x) be generalized Bernstein polynomials based on the q-integers. These polynomials were introduced by G. M. Phillips in 1997. We study convergence properties of the sequence {B-n(f, q; x)}(n=1)(infinity). It is shown that in general these properties are essentially different from those in the classical case q = 1. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:100 / 112
页数:13
相关论文
共 11 条
[1]  
ANDREWS GE, 1976, THEORY PARTITONS
[2]  
Bernstein S.N., 1912, Series, V2, P1
[3]   Convexity and generalized Bernstein polynomials [J].
Goodman, TNT ;
Oruç, H ;
Phillips, GM .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 :179-190
[4]  
Hoschek J., 1993, Fundamentals of computer aided geometric design
[5]  
LI X, 1997, DISTRIBUTIONS GIVEN
[6]  
Lorentz G.G., 1986, BERNSTEIN POLYNOMIAL
[7]   A generalization of the Bernstein polynomials [J].
Oruç, H ;
Phillips, GM .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 :403-413
[8]  
Phillips G. M., 1997, ANN NUMER MATH, V4, P511
[9]  
Phillips G. M., 1996, Numerical analysis, P263
[10]  
PHILLIPS GM, 1996, BIT, V36, P232