Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process

被引:143
作者
Huon Han, Man [1 ]
Gonzalo, Elena [1 ]
Casas-Cabanas, Montse [1 ]
Rojo, Teofilo [1 ,2 ]
机构
[1] CIC Energigune, Minano 01510, Spain
[2] Univ Pais Vasco UPV EHU, Dept Quim Inorgan, Bilbao 48080, Spain
关键词
NaNiO2; Intercalation/deintercalation mechanism; In situ XRD techniques; Na-ion cathode; NA-ION BATTERIES; DEINTERCALATION; INTERCALATION; SYSTEMS; BRONZES; CATHODE; SODIUM; OXIDE;
D O I
10.1016/j.jpowsour.2014.02.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemistry and structural evolution of monoclinic NaNiO2 as a cathode material for Na-ion battery is reported. The initial charge capacity reached 160 mA h g(-1) and the following discharge capacity of 114.6 mA h g(-1), within the voltage range of 4.0-1.5 V at C/10. The multiple phase transition leading to O'3, P'3, P '' 3, O '' 3, and O'''3 stacking types (NaNiO2, Na0.91NiO2, Na0.84NiO2, Na0.81NiO2 and Na0.79NiO2 transitions, respectively, according to a previous report) during the 1st charge/discharge process is analysed using ex situ and in situ XRD techniques, and the stoichiometry of each phase is herein revised. The charge/discharge profile shows a highly reversible nature of the cathode, except that fully sodiated phase could not be achieved at the subsequent discharge. Two new phases have been discovered: a monoclinic O3 structure (designated as O '''' 3) at the beginning of the charge (and end of discharge) and a P3 structure (designated as P'''3) at 338 V that appeared only during the charge process. The composition of the new O '''' 3-phase corresponds to Na0.83NiO2, which is the closest to the fully sodiated phase at room temperature achieved during the discharge process reported up to date, and the composition of the new P'"3-phase corresponds approximately to Na0.50NiO2. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 15 条
[1]   STUDY OF THE NAXCRO2 AND NAXNIO2 SYSTEMS BY ELECTROCHEMICAL DESINTERCALATION [J].
BRACONNIER, JJ ;
DELMAS, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1982, 17 (08) :993-1000
[2]   ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES [J].
DELMAS, C ;
BRACONNIER, JJ ;
FOUASSIER, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :165-169
[3]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[4]   Electrochemical Na-Deintercalation from NaVO2 [J].
Didier, C. ;
Guignard, M. ;
Denage, C. ;
Szajwaj, O. ;
Ito, S. ;
Saadoune, I. ;
Darriet, J. ;
Delmas, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (05) :A75-A78
[5]   Various aspects of LiNiO2 chemistry:: A review [J].
Kalyani, P ;
Kalaiselvi, N .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (06) :689-703
[6]   An advanced cathode for Na-ion batteries with high rate and excellent structural stability [J].
Lee, Dae Hoe ;
Xu, Jing ;
Meng, Ying Shirley .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (09) :3304-3312
[7]   ELECTROCHEMICAL INTERCALATION AND DEINTERCALATION OF NAXMNO2 BRONZES [J].
MENDIBOURE, A ;
DELMAS, C ;
HAGENMULLER, P .
JOURNAL OF SOLID STATE CHEMISTRY, 1985, 57 (03) :323-331
[8]   CHEMICAL AND ELECTROCHEMICAL DEINTERCALATIONS OF THE LAYERED COMPOUNDS LICRO2,LICOOZ AND NACRO2,NAFEO2,NACOO2,NANIO2 [J].
MIYAZAKI, S ;
KIKKAWA, S ;
KOIZUMI, M .
SYNTHETIC METALS, 1983, 6 (2-3) :211-217
[9]   Update on Na-based battery materials. A growing research path [J].
Palomares, Veronica ;
Casas-Cabanas, Montse ;
Castillo-Martinez, Elizabeth ;
Han, Man H. ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2312-2337
[10]   Na-ion batteries, recent advances and present challenges to become low cost energy storage systems [J].
Palomares, Veronica ;
Serras, Paula ;
Villaluenga, Irune ;
Hueso, Karina B. ;
Carretero-Gonzalez, Javier ;
Rojo, Teofilo .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) :5884-5901