Construction of photorefractive photonic quasicrystal microstructures by twisted square lattices

被引:6
作者
Jin, Wentao [1 ]
Song, Meng [2 ]
Xue, Yan Ling [3 ]
Gao, Yuanmei [4 ]
Zheng, Liren [4 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 451191, Peoples R China
[2] Zhengzhou Univ Technol, Coll Basic Sci, Zhengzhou 450044, Peoples R China
[3] East China Normal Univ, Sch Commun & Elect Engn, Dept Commun Engn, Shanghai 200241, Peoples R China
[4] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
FABRICATION; LOCALIZATION; DELOCALIZATION; GRAPHENE; LIGHT;
D O I
10.1364/AO.397622
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A convenient method to fabricate two-dimensional photonic quasicrystal microstructures was experimentally demonstrated by using a rotatable four-wedge prism. Two-dimensional eightfold symmetric quasicrystal microstructures are formed by two groups of twisted square lattices in a photorefractive crystal. The experimental devices of this method are simple and stable without complicated optical adjustment equipment. Optical-induced quasicrystal microstructures are analyzed and verified by magnified imaging and far-field diffraction pattern imaging. The method can be extended to fabricate more complex quasicrystal and moire lattice microstructures. We numerically demonstrate that this method can be used to fabricate other complex photonic microstructures by using different multi-wedge prisms and adjusting the rotation angle properly. (C) 2020 Optical Society of America
引用
收藏
页码:6638 / 6641
页数:4
相关论文
共 34 条
[1]   Plasmonic quasicrystals [J].
Achanta, Venu Gopal .
Progress in Quantum Electronics, 2015, 39 :1-23
[2]   Making invisible materials [J].
Boriskina, Svetlana V. .
NATURE PHOTONICS, 2015, 9 (07) :422-424
[3]   Signatures of tunable superconductivity in a trilayer graphene moire superlattice [J].
Chen, Guorui ;
Sharpe, Aaron L. ;
Gallagher, Patrick ;
Rosen, Ilan T. ;
Fox, Eli J. ;
Jiang, Lili ;
Lyu, Bosai ;
Li, Hongyuan ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Jung, Jeil ;
Shi, Zhiwen ;
Goldhaber-Gordon, David ;
Zhang, Yuanbo ;
Wang, Feng .
NATURE, 2019, 572 (7768) :215-+
[4]   Two-dimensional optical quasicrystal potentials for ultracold atom experiments [J].
Corcovilos, Theodore A. ;
Mittal, Jahnavee .
APPLIED OPTICS, 2019, 58 (09) :2256-2263
[5]   Holographically formed three-dimensional Penrose-type photonic quasicrystal through a lab-made single diffractive optical element [J].
Harb, Ahmad ;
Torres, Faraon ;
Ohlinger, Kris ;
Lin, Yuankun ;
Lozano, Karen ;
Xu, Di ;
Chen, Kevin P. .
OPTICS EXPRESS, 2010, 18 (19) :20512-20517
[6]   Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice [J].
Huang, Changming ;
Shang, Ce ;
Li, Jing ;
Dong, Liangwei ;
Ye, Fangwei .
OPTICS EXPRESS, 2019, 27 (05) :6259-6267
[7]   Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials [J].
Huang, Changming ;
Ye, Fangwei ;
Chen, Xianfeng ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Torner, Lluis .
SCIENTIFIC REPORTS, 2016, 6
[8]   Area scalable optically induced photorefractive photonic microstructures [J].
Jin, Wentao ;
Xue, Yan Ling ;
Jiang, Dongdong .
OPTICAL MATERIALS, 2016, 57 :174-178
[9]   Optical fabrication of two-dimensional photorefractive periodic photonic lattices and quasicrystal microstructures by multi-lens board [J].
Jin, Wentao ;
Xue, Yan Ling .
APPLIED PHYSICS B-LASERS AND OPTICS, 2015, 120 (01) :75-80
[10]   Structuring by multi-beam interference using symmetric pyramids [J].
Lei, Ming ;
Yao, Baoli ;
Rupp, Romano A. .
OPTICS EXPRESS, 2006, 14 (12) :5803-5811