Grassmannian Codes With New Distance Measures for Network Coding

被引:10
作者
Etzion, Tuvi [1 ]
Zhang, Hui [1 ,2 ]
机构
[1] Technion, Dept Comp Sci, IL-3200003 Haifa, Israel
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 639798, Singapore
关键词
Distance measures; generalized combination networks; Grassmannian codes; network coding; ERROR-CORRECTING CODES; T-DESIGNS; Q-ANALOGS; PROJECTIVE SPACES; INFORMATION; GEOMETRIES; 2-DESIGNS;
D O I
10.1109/TIT.2019.2899748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Grassmannian codes are known to be useful in error correction for random network coding. Recently, they were used to prove that vector network codes outperform scalar linear network codes, on multicast networks, with respect to the alphabet size. The multicast networks which were used for this purpose are generalized combination networks. In both the scalar and the vector network coding solutions, the subspace distance is used as the distance measure for the codes which solve the network coding problem in the generalized combination networks. In this paper, we show that the subspace distance can be replaced with two other possible distance measures which generalize the subspace distance. These two distance measures are shown to be equivalent under an orthogonal transformation. It is proved that the Grassmannian codes with the new distance measures generalize the Grassmannian codes with the subspace distance and the subspace designs with the strength of the design. Furthermore, optimal Grassmannian codes with the new distance measures have minimal requirements for the network coding solutions of some generalized combination networks. The coding problems related to these two distance measures, especially with respect to network coding, are discussed. Finally, by using these new concepts, it is proved that the codes in the Hamming scheme form a subfamily of the Grassmannian codes.
引用
收藏
页码:4131 / 4142
页数:12
相关论文
共 47 条
  • [41] Thomas S, 1996, GEOMETRIAE DEDICATA, V63, P247
  • [42] THOMAS S, 1987, GEOMETRIAE DEDICATA, V24, P237
  • [43] TITS J., 1957, C ALG SUP TEN BRUX 1, P261
  • [44] Geometric approach to higher weights
    Tsfasman, MA
    Vladut, SG
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1564 - 1588
  • [45] van Lint J. H., 1992, A course in combinatorics
  • [46] GENERALIZED HAMMING WEIGHTS FOR LINEAR CODES
    WEI, VK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) : 1412 - 1418
  • [47] Johnson type bounds on constant dimension codes
    Xia, Shu-Tao
    Fu, Fang-Wei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (02) : 163 - 172