Photographic Heritage Restoration Through Deep Neural Networks

被引:0
|
作者
Tits, Michael [1 ]
Boukhebouze, Mohamed [1 ]
Ponsard, Christophe [1 ]
机构
[1] CETIC, Charleroi, Belgium
来源
ERCIM NEWS | 2020年 / 123期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent advances in deep neural networks have enabled great improvements in image restoration, a long-standing problem in image processing. Our research centre has experimented with cutting edge algorithms to address denoising, moire removal, colourisation and super resolution, to restore key images representing the photographic heritage of some of Belgium's top athletes.
引用
收藏
页码:35 / 35
页数:1
相关论文
共 50 条
  • [1] Restoration of artwork using deep neural networks
    Gupta, Varun
    Sambyal, Nitigya
    Sharma, Akhil
    Kumar, Praveen
    EVOLVING SYSTEMS, 2021, 12 (02) : 439 - 446
  • [2] Restoration of artwork using deep neural networks
    Varun Gupta
    Nitigya Sambyal
    Akhil Sharma
    Praveen Kumar
    Evolving Systems, 2021, 12 : 439 - 446
  • [3] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR SENTIMENT ANALYSIS OF CULTURAL HERITAGE
    Paolanti, M.
    Pierdicca, R.
    Martini, M.
    Felicetti, A.
    Malinverni, E. S.
    Frontoni, E.
    Zingaretti, P.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 871 - 878
  • [4] Toponym matching through deep neural networks
    Santos, Rui
    Murrieta-Flores, Patricia
    Calado, Pavel
    Martins, Bruno
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2018, 32 (02) : 324 - 348
  • [5] Uncertainty Propagation through Deep Neural Networks
    Abdelaziz, Ahmed Hussen
    Watanabe, Shinji
    Hershey, John R.
    Vincent, Emanuel
    Kolossa, Dorothea
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3561 - 3565
  • [6] HIGH-LEVEL SEMANTIC PHOTOGRAPHIC COMPOSITION ANALYSIS AND UNDERSTANDING WITH DEEP NEURAL NETWORKS
    Wu, Min-Tzu
    Pan, Tse-Yu
    Tsai, Wan-Lun
    Kuo, Hsu-Chan
    Hu, Min-Chun
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [7] Classification of indoor actions through deep neural networks
    Augello, Agnese
    Maniscalco, Umberto
    Vella, Filippo
    Bentivenga, Vincenzo
    Gaglio, Salvatore
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 82 - 87
  • [8] Learning When to Kick through Deep Neural Networks
    Melo, Dicksiano Carvalho
    Forster, Carlos H. Q.
    Maximo, Marcos R. O. A.
    2019 LATIN AMERICAN ROBOTICS SYMPOSIUM, 2019 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR) AND 2019 WORKSHOP ON ROBOTICS IN EDUCATION (LARS-SBR-WRE 2019), 2019, : 43 - 48
  • [9] Stereo Matching through Squeeze Deep Neural Networks
    Caffaratti, Gabriel D.
    Marehetta, Martin G.
    Forradellas, Raymundo Q.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 16 - 38
  • [10] Interpreting Deep Neural Networks through Prototype Factorization
    Das, Subhajit
    Xu, Panpan
    Dai, Zeng
    Endert, Alex
    Ren, Liu
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 448 - 457