Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway

被引:14
|
作者
Yang, Tingting [1 ]
Zhou, Yi [1 ]
Wang, Haiyan [1 ]
Chen, Shangxiu [1 ]
Shen, Mengli [2 ]
Hu, Yinlu [1 ]
Wang, Tao [3 ]
Liu, Junjie [4 ]
Jiang, Zhenzhou [5 ]
Wang, ZhongJian [1 ]
Zhu, Xia [1 ]
Qian, Sitong [1 ]
Yin, Xiaoxing [1 ]
Lu, Qian [1 ]
机构
[1] Xuzhou Med Univ, Jiangsu Key Lab New Drug Res & Clin Pharm, Xuzhou 221004, Jiangsu, Peoples R China
[2] 7th Peoples Hosp Zhengzhou, Dept Pharm, Zhengzhou 450016, Peoples R China
[3] Xuzhou Med Univ, Dept Pharm, Affiliated Hosp, Xuzhou 221006, Jiangsu, Peoples R China
[4] Xuzhou Med Univ, Dept Urol, Affiliated Hosp, Xuzhou 221006, Jiangsu, Peoples R China
[5] China Pharmaceut Univ, Jiangsu Key Lab Drug Screening, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Insulin; High glucose; Type 2 diabetes mellitus; Benign prostatic hyperplasia; Epithelial-mesenchymal transition; MEK/ERK signaling Pathway; METABOLIC SYNDROME; DIABETES-MELLITUS; HYPERPLASIA BPH; INFLAMMATION; QUERCETIN; RISK; PROLIFERATION; NEPHROPATHY; SENSITIVITY; PREVALENCE;
D O I
10.1016/j.yexcr.2020.112145
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
As two most common progressive diseases of aging, type 2 diabetes mellitus (T2DM) and benign prostatic hyperplasia (BPH) were all characterized by endocrine and metabolic disorders. Here, our clinical study showed that there were significant differences in fasting blood glucose (FBG), fasting insulin (FINS), insulin resistance index (HOMA-IR) and prostate volume (PV) between simple BPH patients and BPH complicated with T2DM patients. Further analysis showed that HOMA-IR was positively correlated with PV in BPH complicated with T2DM patients. The in vitro experiment results showed that high glucose (HG) promoted EMT process in a glucose-dependent manner in human prostate hyperplasia cells (BPH-1) and prostate cancer cells (PC-3), and this pathological process was exacerbated by co-culture with insulin. Mechanistically, insulin-induced exacerbation of EMT was depended on the activation of MEK/ERK signaling pathway, and we suggested that insulin and its analogs should be used very carefully for the clinical antihyperglycemic treatment of BPH complicated with T2DM patients.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Insulin exacerbated high glucose-induced epithelial-mesenchymal transition in prostatic epithelial cells BPH-1 and prostate cancer cells PC-3 via MEK/ERK signaling pathway (vol 394, 112145, 2020)
    Yang, Tingting
    Zhou, Yi
    Wang, Haiyan
    Chen, Shangxiu
    Shen, Mengli
    Hu, Yinlu
    Wang, Tao
    Liu, Junjie
    Jiang, Zhenzhou
    Wang, ZhongJian
    Zhu, Xia
    Qian, Sitong
    Yin, Xiaoxing
    Lu, Qian
    EXPERIMENTAL CELL RESEARCH, 2021, 409 (02)
  • [2] The Role of the ERK Signaling Pathway on High Glucose-Induced Epithelial-Mesenchymal Transition in Cultured Human Renal Tubular Epithelial Cells
    Zhao, Jian-Rong
    Xu, Shan-Shan
    Dong, Qin
    Shi, Dong-Ying
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2018, 8 (03) : 405 - 409
  • [3] Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells
    Myzak, MC
    Hardin, K
    Wang, R
    Dashwood, RH
    Ho, E
    CARCINOGENESIS, 2006, 27 (04) : 811 - 819
  • [4] Effect of SIRT1 Gene on Epithelial-Mesenchymal Transition of Human Prostate Cancer PC-3 Cells
    Cui, Ying
    Li, Jiang
    Zheng, Fei
    Ouyang, Yongri
    Chen, Xi
    Zhang, Lei
    Chen, Yang
    Wang, Lin
    Mu, Shijie
    Zhang, Huizhong
    MEDICAL SCIENCE MONITOR, 2016, 22 : 380 - 386
  • [5] Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway
    He, Ting
    Guan, Xu
    Wang, Song
    Xiao, Tangli
    Yang, Ke
    Xu, Xinli
    Wang, Junping
    Zhao, Jinghong
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2015, 402 (0C) : 13 - 20
  • [6] Androgen receptor inhibits epithelial-mesenchymal transition, migration, and invasion of PC-3 prostate cancer cells
    Huo, Chieh
    Kao, Yung-Hsi
    Chuu, Chih-Pin
    CANCER LETTERS, 2015, 369 (01) : 103 - 111
  • [7] The Role of the p38 MAPK Signaling Pathway in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Renal Tubular Epithelial Cells
    Lv, Zhi-Mei
    Wang, Qun
    Wan, Qiang
    Lin, Jian-Gong
    Hu, Meng-Si
    Liu, You-Xia
    Wang, Rong
    PLOS ONE, 2011, 6 (07):
  • [8] Constitutive activation of Mek/ERK malik pathway induces epithelial-mesenchymal transition in intestinal epithelial crypt cells
    Lemieux, Etienne
    Durand, Veronique
    Boucher, Marie-josee
    Rivard, Nathalie
    GASTROENTEROLOGY, 2007, 132 (04) : A538 - A538
  • [9] Endothelin-1 mediated high glucose-induced epithelial-mesenchymal transition in renal tubular cells
    Tang, Lin
    Li, Hui
    Gou, Rong
    Cheng, Genyang
    Guo, Yuanyuan
    Fang, Yudong
    Chen, Fengmei
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2014, 104 (01) : 176 - 182
  • [10] High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells
    Che, Di
    Zhou, Ti
    Lan, Yuqing
    Xie, Jinye
    Gong, Haijun
    Li, Chaoyang
    Feng, Juan
    Hong, Honghai
    Qi, Weiwei
    Ma, Caiqi
    Wu, Qiyuan
    Yang, Xia
    Gao, Guoquan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2016, 38 (06) : 1815 - 1822