Wind Turbines in ABL-Flow: A Review on Wind Tunnel Studies

被引:0
|
作者
Cuzzola, F. [1 ]
Leitl, B. [1 ]
Schatzmann, M. [1 ]
机构
[1] Univ Hamburg, Inst Meteorol, Hamburg, Germany
来源
PROGRESS IN TURBULENCE AND WIND ENERGY IV | 2012年 / 141卷
关键词
WAKE;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Over the last fifteen years a substantial increase in the use of wind energy can be monitored. Presently, several wind farms are planned or under construction in which many wind turbines are arranged as grids. A successful design of a wind farm relies on a number of issues such as: the prediction of wind resource, the rotor-blade design and the optimal siting of the wind turbines. The energy extracted from the flow field by a wind farm depends on the performances of a single wind turbine and the effects of its wake on the wind turbines downstream. The extracted power performances are improving by the enhancement of the near wake research, while far wake research focuses more on the mutual influence among wind turbines and the role played by the terrain the wind farm is located on. Far wake research is important because downstream wind turbines experience a loss of power output as well as an increase of load. At the Meteorological Institute of Hamburg, within the FP7 project WAUDIT, the aim is to deliver quality assurance of wind assessment models. In order to work with reliable data, at the present time we are focusing on the physical modelling of a wind turbine. This paper will review some of the most important previous works analysing the design procedures applied.
引用
收藏
页码:239 / 242
页数:4
相关论文
共 50 条
  • [11] Turbulence and wind turbines
    Brand, Arno J.
    Peinke, Joachim
    Mann, Jakob
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): GEOPHYSICAL AND MAGNETOHYDRODYNAMIC TURBULENCE, 2011, 318
  • [12] Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms
    Porte-Agel, Fernando
    Wu, Yu-Ting
    Lu, Hao
    Conzemius, Robert J.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2011, 99 (04) : 154 - 168
  • [13] A review of aerodynamic and wake characteristics of floating offshore wind turbines
    Wang, Xinbao
    Cai, Chang
    Cai, Shang-Gui
    Wang, Tengyuan
    Wang, Zekun
    Song, Juanjuan
    Rong, Xiaomin
    Li, Qing'an
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 175
  • [14] Review of hybrid model testing approaches for floating wind turbines
    Hmedi, M.
    Uzunoglu, E.
    Guedes Soares, C.
    TRENDS IN MARITIME TECHNOLOGY AND ENGINEERING, MARTECH 2022, VOL 2, 2022, 8 : 421 - 428
  • [15] Large-eddy simulation of turbulent flow past wind turbines/farms: the Virtual Wind Simulator (VWiS)
    Yang, Xiaolei
    Sotiropoulos, Fotis
    Conzemius, Robert J.
    Wachtler, John N.
    Strong, Mike B.
    WIND ENERGY, 2015, 18 (12) : 2025 - 2045
  • [16] Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake
    Takao Maeda
    Yasunari Kamada
    Junsuke Murata
    Sayaka Yonekura
    Takafumi Ito
    Atsushi Okawa
    Tetsuya Kogaki
    Journal of Thermal Science, 2011, 20 : 127 - 132
  • [17] Wind Tunnel Experiments on Interaction between Two Closely Spaced Vertical-Axis Wind Turbines in Side-by-Side Arrangement
    Jodai, Yoshifumi
    Hara, Yutaka
    ENERGIES, 2021, 14 (23)
  • [18] Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake
    Takao MAEDA
    Yasunari KAMADA
    Junsuke MURATA
    Sayaka YONEKURA
    Takafumi ITO
    Atsushi OKAWA
    Tetsuya KOGAKI
    Journal of Thermal Science, 2011, 20 (02) : 127 - 132
  • [19] Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake
    Maeda, Takao
    Kamada, Yasunari
    Murata, Junsuke
    Yonekura, Sayaka
    Ito, Takafumi
    Okawa, Atsushi
    Kogaki, Tetsuya
    JOURNAL OF THERMAL SCIENCE, 2011, 20 (02) : 127 - 132
  • [20] Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms
    Cheng, Shyuan
    Jin, Yaqing
    Chamorro, Leonardo P.
    ENERGIES, 2020, 13 (07)