An Automated Localization, Segmentation and Reconstruction Framework for Fetal Brain MRI

被引:31
作者
Ebner, Michael [1 ]
Wang, Guotai [1 ]
Li, Wenqi [1 ]
Aertsen, Michael [2 ]
Patel, Premal A. [1 ]
Aughwane, Rosalind [1 ,3 ]
Melbourne, Andrew [1 ]
Doel, Tom [1 ]
David, Anna L. [3 ,4 ]
Deprest, Jan [1 ,3 ,4 ]
Ourselin, Sebastien [1 ,5 ]
Vercauteren, Tom [1 ,4 ,5 ]
机构
[1] UCL, WEISS, Translat Imaging Grp, London, England
[2] Univ Hosp KU Leuven, Dept Radiol, Leuven, Belgium
[3] UCL, Inst Womens Hlth, London, England
[4] Univ Hosp KU Leuven, Dept Obstet & Gynaecol, Leuven, Belgium
[5] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
VOLUME RECONSTRUCTION;
D O I
10.1007/978-3-030-00928-1_36
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Reconstructing a high-resolution (HR) volume from motion-corrupted and sparsely acquired stacks plays an increasing role in fetal brain Magnetic Resonance Imaging (MRI) studies. Existing reconstruction methods are time-consuming and often require user interaction to localize and extract the brain from several stacks of 2D slices. In this paper, we propose a fully automatic framework for fetal brain reconstruction that consists of three stages: (1) brain localization based on a coarse segmentation of a down-sampled input image by a Convolutional Neural Network (CNN), (2) fine segmentation by a second CNN trained with a multi-scale loss function, and (3) novel, single-parameter outlier-robust super-resolution reconstruction (SRR) for HR visualization in the standard anatomical space. We validate our framework with images from fetuses with variable degrees of ventriculomegaly associated with spina bifida. Experiments show that each step of our proposed pipeline outperforms state-of-the-art methods in both segmentation and reconstruction comparisons. Overall, we report automatic SRR reconstructions that compare favorably with those obtained by manual, labor-intensive brain segmentations. This potentially unlocks the use of automatic fetal brain reconstruction studies in clinical practice.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 12 条
  • [1] PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI
    Alansary, Amir
    Rajchl, Martin
    McDonagh, Steven G.
    Murgasova, Maria
    Damodaram, Mellisa
    Lloyd, David F. A.
    Davidson, Alice
    Rutherford, Mary
    Hajnal, Joseph V.
    Rueckert, Daniel
    Kainz, Bernhard
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (10) : 2031 - 2044
  • [2] [Anonymous], ARXIV171009338
  • [3] Point-Spread-Function-Aware Slice-to-Volume Registration: Application to Upper Abdominal MRI Super-Resolution
    Ebner, Michael
    Chouhan, Manil
    Patel, Premal A.
    Atkinson, David
    Amin, Zahir
    Read, Samantha
    Punwani, Shonit
    Taylor, Stuart
    Vercauteren, Tom
    Ourselin, Sebastien
    [J]. RECONSTRUCTION, SEGMENTATION, AND ANALYSIS OF MEDICAL IMAGES, 2017, 10129 : 3 - 13
  • [4] A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth
    Gholipour, Ali
    Rollins, Caitlin K.
    Velasco-Annis, Clemente
    Ouaalam, Abdelhakim
    Akhondi-Asl, Alireza
    Afacan, Onur
    Ortinau, Cynthia M.
    Clancy, Sean
    Limperopoulos, Catherine
    Yang, Edward
    Estroff, Judy A.
    Warfield, Simon K.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [5] Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI
    Gholipour, Ali
    Estroff, Judy A.
    Warfield, Simon K.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (10) : 1739 - 1758
  • [6] NiftyNet: a deep-learning platform for medical imaging
    Gibson, Eli
    Li, Wenqi
    Sudre, Carole
    Fidon, Lucas
    Shakir, Dzhoshkun I.
    Wang, Guotai
    Eaton-Rosen, Zach
    Gray, Robert
    Doel, Tom
    Hu, Yipeng
    Whyntie, Tom
    Nachev, Parashkev
    Modat, Marc
    Barratt, Dean C.
    Ourselin, Sebastien
    Cardoso, M. Jorge
    Vercauteren, Tom
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 113 - 122
  • [7] Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices
    Kainz, Bernhard
    Steinberger, Markus
    Wein, Wolfgang
    Kuklisova-Murgasova, Maria
    Malamateniou, Christina
    Keraudren, Kevin
    Torsney-Weir, Thomas
    Rutherford, Mary
    Aljabar, Paul
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (09) : 1901 - 1913
  • [8] Automated fetal brain segmentation from 2D MRI slices for motion correction
    Keraudren, K.
    Kuklisova-Murgasova, M.
    Kyriakopoulou, V.
    Malamateniou, C.
    Rutherford, M. A.
    Kainz, B.
    Hajnal, J. V.
    Rueckert, D.
    [J]. NEUROIMAGE, 2014, 101 : 633 - 643
  • [9] Prenatal Diagnosis and Patient Preferences in Patients with Neural Tube Defects around the Advent of Fetal Surgery in Belgium and Holland
    Ovaere, Celine
    Eggink, Alex
    Richter, Jute
    Cohen-Overbeek, Titia E.
    Van Calenbergh, Frank
    Jansen, Katrien
    Oepkes, Dick
    Devlieger, Roland
    De Catte, Luc
    Deprest, Jan A.
    [J]. FETAL DIAGNOSIS AND THERAPY, 2015, 37 (03) : 226 - 234
  • [10] Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images
    Rousseau, Francois
    Glenn, Orit A.
    Iordanova, Bistra
    Rodriguez-Carranza, Claudia
    Vigneron, Daniel B.
    Barkovich, James A.
    Studholme, Colin
    [J]. ACADEMIC RADIOLOGY, 2006, 13 (09) : 1072 - 1081